ارزیابی الگوریتم ناوبری قایق ربات خودران و مقایسه آن با نتایج شبیه‌سازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک ماشینهای کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

2 دانشیار، گروه مهندسی مکانیک ماشینهای کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

3 استاد، گروه مهندسی مکانیک ماشینهای کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

4 دانشجوی دکتری، گروه مهندسی مکانیک ماشینهای کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

5 دانش آموخته، گروه مهندسی مکانیک ماشینهای کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

امروزه رشد فناوری وسائل نقلیه درون-جاده­ای و برون-جاده­ای چشمگیر بوده و لزوم توسعه زیرساخت­های مرتبط با آن برای بهره­گیری حداکثر از ظرفیت آنها هم از لحاظ حمل و نقل زمینی، دریایی و هوایی، ضروری و غیر قابل اجتناب است. پایش و نمایش محیط اطرف برای یک عملیات ایمن، در شرایط آبی، خاکی و هوایی، بدون استفاده از ربات­ها، عملیاتی وقت گیر و هزینه­بر است. با پایش اتوماتیک می­توان عملیات را با کمترین خطا و در طی 24 ساعت شبانه روز به انجام رساند. بنابراین هدف از این پژوهش توسعه و ارزیابی یک الگوریتم مرکب برای ناوبری خودران یک وسیله نقلیه برون جاده­ای (شناور سطحی) و مقایسه آن با نتایج به­دست آمده از شبیه سازی­های کامپیوتری است تا دقت و صحت این الگوریتم مورد بررسی قرار گیرد. این قایق ربات که برای هیدروگرافی طراحی و ساخته شده است، می تواند به صورت کاملا خودران و بدون نظارت، ناوبری کرده و عملیات هیدروگرافی را به صورت شبانه روزی به انجام برساند. مقایسه بین نتایج تجربی و نتایج شبیه سازی نشان داد، الگوریتم شبیه سازی شده دقت قابل قبولی داشته و می­تواند ناوبری را به صورت عملی و تجربی انجام دهد. مقدار انحراف از استاندارد (SD) برای آزمون عملی تقریبا برابر m 5/0 به دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of a Navigation Algorithm for Robot Boat and Comparison to Simulation Results

نویسندگان [English]

  • Yousef Salmani 1
  • Hossein Mousazadeh 2
  • Reza Alimardani 3
  • Hamid Jafarbiglu 4
  • elham omrani 4
  • Ashkan Makhsoos 5
  • Ali Kiapey 5
1 M.Sc. Student, Agricultural Machinery Engineering Department, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2 Associate Professor, Agricultural Machinery Engineering Department, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3 Professor, Agricultural Machinery Engineering Department, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
4 Ph.D. Candidate, Agricultural Machinery Engineering Department, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
5 Graduated Student, Agricultural Machinery Engineering Department, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

Nowadays, the growth of in-vehicle and off-road vehicle technology is significant and the need to develop its related infrastructure to maximize their capacity for land, sea and air transportation is essential and unavoidable. It is time consuming and costly to monitoring the environment in water, earth and air conditions for a safe operation, without the use of robots. With automatic monitoring, operations can be performed with the least error and 24 hours a day. So the purpose of this research is to develop and evaluate a composite algorithm for navigating an off-road vehicle (Surface Vehicle) and compare it with the results obtained from computer simulations, to check the accuracy of this algorithm. This robot boat is designed and developed for hydrographic construction could navigate and perform hydrographic operations around the clock and fully autonomous without any supervision. Comparison between experimental and simulation results showed that the simulated algorithm had acceptable accuracy and could navigate experimentally. The Standard Deviation (SD) for practical test was below 0.5 m.

کلیدواژه‌ها [English]

  • Navigation
  • Kalman Filter
  • simulation
  • Autonomous robot
  • control
Anonymous. International Maritime Organization. (2017). Retrieved March, https:// business. un.org/ en/entities/13.
Bertaska, I.R., Shah, B., Ellenrieder, K., Švec, P., Klinger, W., Sinisterra, A.J., Dhanak, M., Gupta, S.K. (2015). Experimental evaluation of automatically-generated behaviors. Ocean Engineering.106, 496–514.
Bibuli, M., Bruzzone, G., Caccia, M., Lapierre, L. (2009). Path-following algorithms and experiments for an unmanned surface vehicle. Journal of Field Robotics. 26, 669-688.
Caccia, M., Bono, R., Bruzzone, G., Bruzzone, G., Spirandelli, e., Veruggio, G., Maria Stortini, A., Capodaglio, G. (2005). An autonomous craft for the study of sea-air interactions. IEEE Robotics & Automation Magazine. 95-105.
Campbell S., Naeem W., Irwin G.W. (2012). A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres. Annual Reviews in Control. 36, 267–283.
Chavez, F.P., Sevadjian, J., Wahl, C., Friederich, J., Friederich, G.E. (2017). Measurements of pCO2 and pH from an autonomous surface vehicle in a coastal upwelling system. Deep-Sea Research Part II. Accepted paper.
Corfield, S.J., & Young, J.M. (2008). Unmanned surface vehicles-game changing technology for naval operations. IET Control Engineering Series (69). Chapter 15, 311-326.
Doa, K.D., Jiang, Z.P., Pana, J. (2004). Robust adaptive path following of underactuated ships. Automatica. 40, 929 – 944.
Elkins L., Sellers D.,  Monach W.R. (2010). The Autonomous Maritime Navigation (AMN) project: field tests, autonomous and cooperative behaviors, data fusion, sensors, and vehicles. Journal of Field Robotics. 27(6), 790–818.
Fossen, T.I. (1994). Guidance and control of ocean vehicles. John Wiley and sons.
Gomez-Gil, J., Ruiz-Gonzalez, R., Alonso-Garcia, S., Gomez-Gil, F.J. (2013). A Kalman Filter implementation for precision improvement in low-cost GPS positioning of tractors. Sensors, 13, 15307-15323.
Hall S., Randy R. (2004). Use of Autonomous Vehicles for Drinking Water Monitoring and Management in an Urban Environment. ASAE/CSAE Annual International Meeting Sponsored by ASAE/CSAE. Ottawa, Ontario, Canada. 1 - 4 August.
Hall S.G., Smith D.D., Davis T. (2009). Design of a communications system between multiple autonomous vehicles. ASABE Annual International Meeting Sponsored by ASABE. Nevada. June 21 – June 24.
Kaizu Y., Iio M., Yamada H., Noguchi N. (2011). Development of unmanned airboat for water-quality mapping. Biosystems engineering. 109. 338-347.
Kang, M., Kwon, S., Park, J., Kim, T., Han, J., Wang, J., Hong, S., Shim, Y., Yoon, S., Yoo, B., Kim, J.  (2015). Development of USV autonomy for the 2014 maritime RobotX Challenge. IFAC-Papers on Line. 48(16), 13–18.
Kjerstad Q.K. (2009). Dynamic positioning concepts for unmanned surface vehicles. Master thesis in Department of Engineering Cybernetics, Norwegian University of Science and Technology
Liu, Y., Bucknall, R. (2015). Path planning algorithm for unmanned surface vehicle formations in a practical maritime environment. Ocean engineering. 97, 126–144.
Liu Y., Noguchi N., Yusa T. (2014). Development of an unmanned surface vehicle platform for autonomous navigation in paddy field. Proceedings of the 19th world congress. The International Federation of Automatic Control Cape Town, South Africa.
Ma E. (2015). Two modified unscented Kalman filter and acceleration information in unmanned surface vehicle estimation. IFAC-Papers on Line, 48(28), 1450–1455.
Manda, D., Thein, M.W., D’Amore, A., Armstrong, A. (2015). A low cost system for autonomous surface vehicle based hydrographic survey. Proceedings: U.S. Hydrographic Conference, National Harbor, MD, 16-19.
Muske, K.R., Ashrafiuon, H. (2008). Identification of a control oriented nonlinear dynamic USV model. American Control Conference.Westin Seattle Hotel, Seattle, Washington, USA.
Naeem, W., Henrique, S.C., Hu, L. (2016). A reactive COLREGs-Compliant navigation strategy for autonomous maritime navigation. IFAC conference archive. 207-213.
Naeem, W., Sutton, R, Xu, T. (2012). An integrated multi-sensor data fusion algorithm and autopilot implementation in an uninhabited surface craft. Ocean Engineering. 39, 43–52.
Naeem W., Xu T., Sutton R. Chudley J. (2007). Design of an unmanned catamaran with pollutant tracking and surveying capabilities. Published by the Institution of Engineering and Technology. 99-113.
Park, J.H., Shim, H.W., Jun, B.H., Kim, S.M., Lee, P.M. Lim, Y.K. (2010). A model estimation and multi-variable control of an unmanned surface vehicle with two fixed thrusters. 978-1-4244-5222-4/10/$26.00 ©IEEE.
Pêtrès, C., Romero-Ramirez, M.A., Plumet, F. (2012). A potential field approach for reactive navigation of autonomous sailboats. Robotics and Autonomous Systems. 60, 1520–1527.
Praczyk, T. (2015). Neural anti-collision system for Autonomous Surface Vehicle. Neurocomputing. 149, 559–572.
Rasal, K. (2013). Navigation & control of an automated SWATH surface vessel for bathymetric mapping. Mechanical Engineering Masters Theses. Santa Clara University.
Sonnenburg, C., Gadre, A., Horner, D., Krageland, S., Marcus, A., Stilwell, D. J., Woolsey, C. A. (2010). Control-oriented planar motion modeling of unmanned surface vehicles. Virginia Center for Autonomous Systems. Technical Report No. VaCAS-2010-01.
Zereik, E., Sorbara, A., Bibuli, M., Bruzzone, G., Caccia, M. (2015). Priority task approach for usvs’ path following missions with obstacle avoidance and speed regulation. IFAC-Papers on Line. 48(16), 25–30.