Ayman E. K., Kadry, M. & Walid, G. (2015). Proposed framework for implementing data mining techniques to enhance decisions in agriculture sector, Procedia Computer Science, 65, 633
Ellis, R. N., Basford, K. E., Cooper, M., Leslie, J. K. & Byth, T. L. D. E. (2001). A methodology for analysis of sugarcane productivity trends. I. Analysis across districts. Australian Journal of Agricultural Research, 52, 1001–1009.
Geetha, M. C. S. (2015). A survey on data mining techniques in agriculture. International Journal of Innovative Research in Computer and Communication Engineering, 3(2), 887-892.
Goktepe, A. B., Altun, S. & Sezar, A. (2015). Soil clustering by fuzzy C-Means algorithm. Advances in Engineering Software, 36, 691-698.
Jeysenthil.K. M. S., Manikandan.T & Murali, E. (2014). Third generation agricultural support system development using data mining. International Journal of Innovative Research in Science, Engineering and Technology, 3 (3), 9923- 9930.
Kalpana, R., Shanthi, N. & Arumugam, S. (2014a). Data mining – An evolutionary view of agriculture. International Journal of Application or Innovation in Engineering & Management, 3 (3), 102- 105.
Kalpana, R., Shanthi, N. & Arumugam, S. (2014b). A survey on data mining techniques in agriculture. International Journal of Advances in Computer Science and Technology, 3(8), 426-431.
Lawes, R. A., Lawn, R. J., Wegener, M. K. & Basford, K. E. (2002). Understanding and managing the late time of ratooning effect on cane yield. Proceedings of the Australian Society of Sugar Cane Technology, 24, 160–165.
Monjezi, N., Sheikhdavoodi1, M. J., Zakidizaji1, H., Marzban, A. & Shomeili, M. (2016). Operations scheduling of sugarcane production using fuzzy GERT method (part II: preserve operations, harvesting and rationing). Agricultural Engineering International: CIGR Journal, 18 (3), 343- 349.
Monjezi, N., Sheikhdavoodi, M. J., Zakidizaji, H., Marzban, A. & Shomeili, M. (2015a). Operations scheduling of sugarcane production using classical GERT method (part I: land preparation, planting and preserve operations). Journal of Agricultural Studies, 3 (2), 85-96.
Monjezi, N., Sheikhdavoodi, M. J., Zakidizaji, H., Marzban, A. & Shomeili, M. (2015b). Operations scheduling of sugarcane production using classical GERT method (part II: preserve operations, harvesting and ratooning). Journal of Agricultural Studies, 3 (2), 85-96.
Monjezi, N. & Zakidizaji, H. (2017). Fuzzy approach to optimize overhaul time of sugarcane harvester using GERT network method. Iranian Journal of Biosystem Engineering, 48(1), 83-91. (In Farsi)
Noorzadeh, M., Khavazi, K., Malakooti, M. & Hashemi, S. (2011).Evaluation of the effectiveness of C-means and GK methods for fuzzy clustering of copper concentration in agricultural lands (Case study: Hamedan Province). Journal of Agricultural Engineering, 33 (1), 61-70. (In Farsi)
Rajesh, D. (2011). Application of spatial data mining for agriculture. International Journal of Computer Applications, 15(2), 7-9.
Ramesh, D. & Vishnu Vardhan, B. (2013). Data mining techniques and applications to agricultural yield data. International Journal of Advanced Research in Computer and Communication Engineering, 2(9), 3477-3480.
Raorane, A.A. & Kulkarni R.V. (2013). Review- Role of data mining in agriculture. International Journal of Computer Science and Information Technologies, 4 (2), 270 – 272.
Sharma, L. & Mehta, N. (2012). Data mining techniques: A tool for knowledge management system in agriculture. International Journal of Scientific and Technology Research, 1(5), 67-73.
Yethiraj, N. G. (2012). Applying Data Mining Techniques in the field of agriculture and alliedsciences. International Journalof Business Intelligents, 1(2), 72-76.
Yoneyama, Y., Suzuki, S., Sawa, R., Yoneyama, K., Power, G. G. & Araki, T. 2002. Increased plasma adenosine concentrations and the severity of preeclampsia. Obstet Gynecol, 100(6), 1266-1270.