Acosta, G. & Tosini, M., (2001). A firmware digital neural network for climate prediction applications, Intelligent Control, 2001.(ISIC'01). Proceedings of the 2001 IEEE International Symposium on. IEEE. 127-131.
Arahal, M. R., Rodriguez, F., Ramirez-Arias, A. & Berenguel, M., (2005). Discrete-time nonlinear FIR models with integrated variables for greenhouse indoor temperature simulation, Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC'05. 44th IEEE Conference on. IEEE. 4158-4162.
Azadeh, A., Maghsoudi, A. & Sohrabkhani, S. (2009). An integrated artificial neural networks approach for predicting global radiation. Energy Conversion and Management, 50(6), 1497-1505.
Boaventura Cunha, J., Couto, C. & Ruano, A., (2000). A greenhouse climate multivariable predictive controller, International Conference and British-Israeli Workshop on Greenhouse Techniques towards the 3rd Millennium 534. 269-276.
Dariouchy, A., Aassif, E., Lekouch, K., Bouirden, L. & Maze, G. (2009). Prediction of the intern parameters tomato greenhouse in a semi-arid area using a time-series model of artificial neural networks. Measurement, 42(3), 456-463.
Dodange, M., (2011). Evaluation and evaluation of solar greenhouses against fossil greenhouses, Faculty of Economics and Accounting. Islamic Azad University, Central Tehran Branch.
Du, J., Bansal, P. & Huang, B. (2012). Simulation model of a greenhouse with a heat-pipe heating system. Applied energy, 93, 268-276.
Ferreira, P., Faria, E. & Ruano, A. (2002). Neural network models in greenhouse air temperature prediction. Neurocomputing, 43(1), 51-75.
Haykin, S. (1994). Neural networks: A comprehensive foundation: Macmillan college publishing company. New York.
Hecht-Nielsen, R., (1987). Kolmogorov’s mapping neural network existence theorem, Proceedings of the international conference on Neural Networks. New York: IEEE Press. 11-13.
Hornik, K., Stinchcombe, M. & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural networks, (5), 2359-2366.
Jain, S., Das, A. & Srivastava, D. (1999). Application of ANN for reservoir inflow prediction and operation. Journal of Water Resources Planning and Management, 125(5), 263-271.
Joudi, K. A. & Farhan, A. A. (2015). A dynamic model and an experimental study for the internal air and soil temperatures in an innovative greenhouse. Energy Conversion and Management, 91, 76-82.
Karimi, S., Kisi, O., Shiri, J. & Makarynskyy, O. (2013). Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia. Computers & Geosciences, 52, 50-59.
Linker, R. & Seginer, I. (2004). Greenhouse temperature modeling: a comparison between sigmoid neural networks and hybrid models. Mathematics and computers in simulation, 65(1), 19-29.
Makarian, H. a. R., A (2013). Prediction of Spatial Distribution Pattern of Acroptilon repens L. Population Using Learning Vector Quantization Neural Network Model Knowledge of agriculture and sustainable production, 23(1), 85-98.
Marcos, S., Macchi, O., Vignat, C., Dreyfus, G., Personnaz, L. & Roussel‐Ragot, P. (1992). A unified framework for gradient algorithms used for filter adaptation and neural network training. International journal of circuit theory and applications, 20(2), 159-200.
Møller, Martin Fodslette. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural networks, 6(4), 525-533
Omid, M. & Shafaei, A. (2004). Investigation of temperature and humidity variations within a greenhouse using a computer-based data acquisition system pajouhesh-va-sazandegi, 17(3), 67-73. (In Farsi)
Peyman, M. a. M., A, H, (2007). Experimental criteria for determining the appropriateness of using multi-layered perceptron neural network to classify patterns, First Iranian Data Mining Conference.
Sabziparvar, A., A and Khataar, B (2014). Evaluation of Artificial Neural Network (ANN) and Irmak Experimental Models to Predict Daily Solar Net Radiation (Rn ) in Cold Semi-arid Climate (Case study: Hamedan). Water and soil knowledge, 25(2), 37-50.
Seginer, I. (1997). Some artificial neural network applications to greenhouse environmental control. Computers and Electronics in Agriculture, 18(2-3), 167-186.
Saini, Lalit Mohan. (2008). Peak load forecasting using Bayesian regularization, Resilient and adaptive backpropagation learning based artificial neural networks. Electric Power Systems Research, 78(7), 1302-1310.
Van Henten, E., (1994). Greenhouse climate management: an optimal control approach. Van Henten, Place: Published.
Wang, Y.-M. & Elhag, T. M. (2007). A comparison of neural network, evidential reasoning and multiple regression analysis in modelling bridge risks. Expert Systems with Applications, 32(2), 336-348.