طراحی و ارزیابی یک الگوریتم مبتنی بر پردازش تصویر برای بازسازی شکل و اندازه‌‌گیری برخط ابعاد هندسی گل آنتوریوم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فنی کشاورزی، پردیس ابوریحان، دانشگاه تهران، تهران، ایران

2 گروه فنی کشاورزی، پردیس ابوریحان، دانشگاه تهران، تهران ایران

چکیده

بازسازی شکل یک محصول به صورت مجموعه نقاط یا یک منحنی چندجمله‌‌ای در دستگاه مختصات دکارتی، تشخیص خودکار نقاط کلیدی شکل را ممکن می‌‌کند. از این‌‌رو، مشخصه‌‌های هندسی محصول را می‌‌توان در یک مدت زمان کم و بدون نیاز به کاربر به دست آورد. در این تحقیق، یک الگوریتم جدید برای بازسازی شکل و تشخیص نقاط کلیدی گل آنتوریوم ارائه شده است. در این الگوریتم، از روش‌‌های پردازش تصویر، منحنی‌‌های بی‌‌اسپلاین و عملگرهای ریاضی به‌ترتیب برای استخراج لبه، بازسازی شکل و تشخیص نقاط کلیدی استفاده شده است. نتایج نشان داد که درجه تشابه منحنی بازسازی شده با تصویر اصلی برای سه رقم گل آنتوریوم، به‌طور میانگین، 6/97% بود. زمان پردازش الگوریتم در حالت تعداد گره بی‌‌اسپلاین بهینه، 62/0 ثانیه بود. در تمام آزمایش‌‌ها، الگوریتم هر دو نقطه کلیدی تعریف شده برای شکل گل را به درستی تشخیص داد و خطای تخمین ابعاد هندسی در هر سه رقم کمتر از 3% بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design and Evaluation of an Image Processing Based Algorithm for Shape Reconstruction and Real-Time Measurement of Geometrical Dimensions of Anthurium Flower

نویسندگان [English]

  • Alireza Soleimani Pour 1
  • Gholamreza chegini 2
1 College of Aburaihan, University of Tehran, Tehran, Iran
2 Agrotechnology Dept, Aboreihan college,Tehran university,Tehran,Iran
چکیده [English]

Reconstructing an object as a set of points or a polynomial curve in a Cartesian coordinate system provides automatic recognition of the object key points. So, it is possible to obtain geometrical key-points in a short time and without the operator. In this research, a new algorithm was developed to reconstruction and recognition of key points of Anthurium flowers. Image processing techniques, B-spline curves and mathematical operations are used for boundary extraction, shape reconstruction and key-points detection. The results showed that the degree of similarity between reconstructed shape and original image shape for three cultivars of Anthurium flower is 97.6%, averagely. The processing time of the algorithm was 0.62s for optimum B-spline knot number. Also, in all tests, the two key-points defined for the shape of Anthurium flower have been accurately detected and estimation error for measuring the geometrical dimensions of Anthurium flower using the algorithm was less than 3%.

کلیدواژه‌ها [English]

  • Anthurium
  • B-spline curves
  • image processing
  • Reconstruction
  • mathematical operations
Bachau, H., Cormier, E., Decleva, P., Hansen, J.E. & Martin F. (2001). Application of B-splines in atomic and molecular physics. Reports on Progress in Physics, 64, 1815-1942.
Bagheri, G.H., Bonadonna, C., Manzella, I. & Vonlanthenb, P. (2015). On the characterization of size and shape of irregular particles. Powder Technology, 270, 141-153.
Cubero, S., Aleixos, N., Molto, E., Gomez-Sanchis, J. & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4(5), 829–830.
Dufour, L. & Guérin, V. (2003). Growth, developmental features and flower production of Anthurium andreanum Lind in tropical conditions. Scientia Horticulturae, 98 (1), 25–35.
Eifert, J.D., Sanglay, G.C., Lee, D.-J., Sumner, S.S. & Pierson, M.D. (2006). Prediction of raw produce surface area from weight measurement. Journal of Food Engineering, 74(4), 552–556.
Erdoğan, S. (2016). Simple Estimation of the Surface Area of Irregular 3D Particles. Journal of Materials in Civil Engineering, 28(8), p.04016062
Galinsky, R. & Laws, N. (1996). Anthurium market. RAP Market Information Bulletin, 11.
Goni, S.M., Purlis, E. & Salvadori, V.O. (2007). Three-dimensional reconstruction of irregular foodstuffs. Journal of Food Engineering, 82, 536–547.
Gonzalo, M.J. & van der Knaap, E. (2008). A comparative analysis into the genetic bases of morphology in tomato varieties exhibiting elongated fruit shape. Theoretical and Applied Genetics, 116, 647–656.
Higaki, T., Lichty, J.S. & Moniz, D. (1995). Anthurium culture in Hawaii. HITAHR Res. Extension Ser. 152, University of Hawaii, Honolulu, pp. 28.
Hua, X. (2014). Flower market research report in Chinese New Year in 2013. China Flowers & Horticulture, 13, 24–28.
Jaccard, P. (1912). The distribution of the flora in the alpine zone. New Phytologist, 11(2), 961-967.
Kumar, V.A. & Mathew, S. (2003). A method for estimating the surface area of ellipsoidal food materials. Biosystems Engineering, 85(1), 1–5.
Lee, D.J., Xu, X., Eifert, J.D. & Zhan, P. (2006). Area and volume measurements of objects with irregular shapes using multiple silhouettes. Optical Engineering, 45(2), 27202–27212.
Leemans, V. & Destain, M.F. (2004). A real-time grading method of apples based on features extracted from defects. Journal of Food Engineering, 61(1), 83–89.
Lin, H.S. (2008). A study of Automatic Anthurium cut-flower grading system with machine vision. Department of Computer Science and Information Engineering, Asia University. <http:// asiair.asia. edu.tw/ ir/ handle/ 310904400/ 4214> (accessed 12.1.2015).
Moustakides, G., Briassoulis, D., Psarakis, E. & Dimas, E. (2000). 3D image acquisition and NURBS based geometry modelling of natural objects. Advances in Engineering Software, 31, 955–969.
Omid, M., Khojastehnazhand, M. & Tabatabaeefar, A. (2010). Estimating volume and mass of citrus fruits by image processing technique. Journal of food Engineering100(2), 315–321.
Omrani, E., Mohtasebi, S.S., Rafiee, S. & Hosseinpour, S. (2015). Identification of apple leaf varieties using image processing and adaptive neuro- fuzzy inference system. Iranian Journal of Biosystem Engineering, 46(1), 67–75 (In Farsi).
Rikken, M. (2010). The European Market for Fair and Sustainable Flowers and Plants. Trade for Development Centre, Belgian Development Agency, Belgium, pp. 63.
Rodriguez, G.R., Munoz, S., Anderson, C., Sim, S.C., Michel, A., Causse, M., McSpadden Gardener, B.B., Francis, D. & van der Knaap, E. (2011). Distribution of SUN, OVATELC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiology, 156, 275–285.
Somsen, D., Capelle, A. & Tramper, J. (2004). Manufacturing of par-fried French-fries: Part 1: Production yield as a function of number of tubers per kilogram. Journal of Food Engineering, 61(2), 191–198.
Stanberry, L. & Besag, J. (2014). Boundary reconstruction in binary images using splines. Pattern Recognition, 47, 634–642.
Taylor, M.A., Garboczi, E.J., Erdogan, S.T. & Fowler, D.W. (2006). Some properties of irregular 3-D particles. Powder Technology, 162, 1–15
Teixeira da Silva, J.A., Dobránszki, J., Winarto, B. & Zeng, S. (2015). Anthurium in vitro: a review. Scientia Horticulturae, 186, 266–298.
Zhang, B., Huang, W., Li, J., Zhao, C., Fan, S., Wu, J. & Liu, C. (2014). Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Food Research International, 62, 326–343.
Zhao, Z. & Stough, R.R. (2005). Measuring similarity among various shapes based on geometric matching. Geographical Analysis, 37, 410–422.