Calvet, S., Cambra-Lopez, M., Blanes-Vidal, V., Estelles, F. & Torres A.G. (2010).Ventilation rates in mechanically-ventilated commercial poultry buildings in Southern Europe: Measurement system development and uncertainty analysis. Biosystems Engineering, 106, 423-432.
CIGR. (2002). International Commission of Agricultural Engineering, Section II: 4th report of working group on climatization of animal houses: Heat and moisture production at animal and house level. S. Pedersen and K. Sallvik, eds. Horsens, Denmark: Danish Institute of Agricultural Sciences, Research Centre Bygholm.
Kiani, Sh., Bahrami, H., Almasi, M. & Sheikh Davari, M. J. (2016). The best way to save solar energy in the greenhouse due to technical, economic and environmental factors. Journal of Researches in Mechanics of Agricultural Machinery, 5(2), 9-17. (In Farsi)
KOH, K. & MACLEOD, M. G. (1999). Circadian variation in heat production and respiratory quotient in growing broilers maintained at different food intakes and ambient temperatures, British Poultry Science. 40(3), 353-356. DOI: 10.1080/00071669987449.
Li, H., Xin, H., Liang, Y., Gates, R. S., Wheeler, E. F. & Heber, A. J. (2004). Comparison of Direct vs. Indirect Ventilation Rate Determination for Manure Belt Laying Hen Houses. Agricultural and Biosystems Engineering Conference Proceedings and Presentations. Iowa State University.
Liu, Z., Powers, W. & Harmon, J. D. (2016). Estimating Ventilation Rates of Animal Houses through CO2 Balance. American Society of Agricultural and Biological Engineers, 59(1), 321-328.
Mendes, L. B., Tinoco, I. F. F., Nico, O., osorio, R. H. & Saraz, A. O. (2014). A refined protocol for calculating air flow rate of naturally-ventilated broiler barns based on CO2mass balance. Universidad Nacional de Colombia Sede Medellin. DYNA, 81(185), 189-195.
Norton, T., Sun, D. W., Grant, J., Fallon, R. & Dodd, V. (2007). Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: a review. Bioresource Technology, 98, 2386-2414.
Pashmi, M. & Moradi, S. (2010). Buildings, installations and equipment for growing of poultry. Publishing promoting agricultural training, Tehran, Iran. (in Farsi)
Payandeh, Z., Kheiralipor, K. & Karimi, M. (2016). Evaluation of efficiency of broiler chickens breeding units by data envelopment analysis, Case study: Isfahan province. Iranian Journal of Biosystem Engineering, 47(3), 577-585. (in Farsi)
Pedersen, S., Blanes-Vidal, V., Joergensen, H., Chwalibog, A., Haeussermann, A., Heetkamp M. J. W. & Aarnink, A. J. A. (2008). Carbon Dioxide Production in Animal Houses: A literature Review. Agricultural Engineering International: CIGR Ejournal. Manuscript BC 08 008, Vol. X.December, 2008.
Sadrnia, H., khojastehpour, M., Aghel, H. & Saiedi Rashk Olya, A.. (2017). Analysis of different inputs share and determination of energy Indices in broilers production in Mashhad city. Journal of Agricultural Machinery, 7(1), 285-297. (in Farsi)
Xin, H., Berry, I. L., Tabler, G. T. & Costello, T. A. (2001). HEAT AND MOISTURE RODUCTION OF POULTRY AND THEIR HOUSING SYSTEMS: BROILERS. American Society of Agricultural and Biological Engineers, 44(6), 1851–1857.
Xin, H., Li, H., Burns, R. T., Gates, R. S., Overhults, D. G. & Earnest.J. W. (2009). Use of CO2 Concentration Difference or CO2 Balance to Assess Ventilation Rate of Broiler Houses. American Society of Agricultural and Biological Engineers, 52(4), 1353-1361.