طبقه بندی توت فرنگی بر اساس میزان رسیدگی و اندازه به کمک ماشین بینایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران

2 گروه مهندسی بیوسیستم ، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران

چکیده

در این پژوهش برای درجه­بندی میوه توت‌فرنگی از لحاظ اندازه و میزان رسیدگی از بینایی ماشین و شبکه عصبی مصنوعی استفاده شد. ابتدا یک الگوریتم پردازش تصویر برای استخراج ویژگی­های رنگ و اندازه توت­فرنگی توسعه داده شد و سپس درجه­بندی توت­فرنگی بر اساس اندازه به سه طبقه ممتاز، درجه یک و درجه دو و بر اساس میزان رسیدگی به کمک ویژگی­های رنگی به سه طبقه رسیده، نیم­رس و نارس انجام شد. نتایج تحلیل حساسیت نشان داد که درجه­بندی بر اساس اندازه به ویژگی­ قطر بزرگ، قطر کوچک، محیط و مساحت حساسیت بیشتری دارد. همچنین بر اساس همبستگی بین میزان مواد جامد محلول و رنگ محصول، a* و S از میان بقیه ویژگی­های رنگی برای درجه­بندی بر اساس میزان رسیدگی انتخاب شدند. در نهایت نتایج نشان داد که شبکه عصبی مصنوعی قادر است با دقت کلی 04/94 و 14/95 به ترتیب درجه­بندی بر اساس اندازه و میزان رسیدگی را انجام دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Classification of Strawberry Based on Maturity Rate and Size Using Machine Vision

نویسندگان [English]

  • Jalal Khodaei 1
  • Nasser Behroozi-Khazaei 2
  • Amin Hosseinzadeh Rendi 1
1 Biosystems Engineering Department, College of Agriculture, University of Kurdistan, Sanandaj, Iran
2 Biosystems Engineering Department,College of Agriculture, University of Kurdistan , Sanandaj, Iran
چکیده [English]

In this article a machine vision system and an artificial neural network (ANN) for classifying the strawberry based on maturity and shape features were used. First an image processing algorithm for extracting the color and shape features was investigated and then for grading the strawberry into three classes based on shape features and three classes of maturity based on colors features were done. The sensitivity analysis indicated that shape grading had highest sensitive to area, parameter, large and minor diameters features. Also a* and S color features had better correlation coefficient than other color features with total solid soluble and therefore were selected as supreme features for grading the strawberry based on maturity. Finally, results demonstrated that the ANN was able to classify with 94.04 and 95.14 total accuracy rate for shape and maturity grading. 

کلیدواژه‌ها [English]

  • Artificial Neural Network
  • image processing
  • Sensitivity analysis
  • Total solid soluble
Afshari-Joibari, H. and Farahnaki, A. (2010). Possibility of using Photoshop software for measurement food color: Investigation of the color changes of the Masafaty date of Bam during artificial propagation. Iranian Food Science and Technology Research,5(1): 37-46.
Anonymous. (2016). Agriculture Iranian statistics, http://amar.maj.ir.
Bato, P.M., Nagata, M., Cao, Q.X., Hiyoshi, K. and Kitahara, T. (2000). Study on sorting system for strawberry using machine vision (part 2): development of sorting system with direction and judgement functions for strawberry (Akihime variety). Journal of the Japanese Society of Agricultural Machinery, 62(2): 101-110.
Banakar, A., Zareiforoush, H., Baigvand, M., Montazeri, M., Khodaei, J., Behroozi-khazaei, N. (2016). Combined application of decision tree and fuzzy logic techniques for intelligent grading of dried figs. Journal of Food Process Engineering. doi:10.1111/jfpe.12456.
Baigvand, M., Banakar, A., Minaei, S., Khodaei, J., Behroozi-khazaei, N. (2015). Machine vision system foe grading of dried figs. Computers and Electronics in Agriculture, 119: 158-165.
Hayashi, S., Shigematsu, K., Yamamoto, S., Kobayashi, K., Kohno, Y., Kamata, J. and Kurita, M. (2010). Evaluation of a strawberry-harvesting robot in a field test. Biosystems Engineering, 105: 160-171.
Hohen, E.Gasser, F.Gugyenbuhl, B., Kunsch, U. (2003). Efficacy of instrumental measurements for determination of minimum requirements of firmness, soluble solids, and acidity of several apple varieties in comparison to consumer expectations. Postharvest Biology and Technology, 7: 27-37.
Liming, X. and Yanchao, Z. (2010). Automated strawberry grading system based on image processing. Computers and Electronics in Agriculture, 71: 32-39.
Lee, D. H., Cho, Y. and Choi, J. M. (2017). Strawberry Volume Estimation Using Smartphone Image Processing. Horticultural Science and Technology, 35(6): 707-716.
Ishikawa, T., Hayashi, A., Nagamatsu, S., Kyutoku, Y., Dan, I., Wada, T., Oku, K., Saeki, Y., Uto, T., Tanabata, T., Isobe, S. and Kochi, N. (2018). Classification of strawberry fruit shape by machine learning. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2, 463-470.
Mohsenin, N. N. (1970). Physical Properties of Plant and Animal Materials. Gordon and Breach, NewYork.
Mohammadi, V., Kheiralipour,  K., Ghasemi-Varnamkhasti, M. 2015. Detecting maturity of persimmon fruit based on image processing technique. Scientia Horticulturae, 184: 123-128.
Mark, S.N. and Alberto, S.A. 2002. Feature Extraction and Image Processing. A division of Reed Educational and Professional Publishing Ltd. Jordan Hill, Oxford. 350 P.
Nagata, M. and Tallada, J.G. (2008). Quality evaluation of strawberries. Computer Vision Technology for Food Quality Evaluation, 1: 265-287.
Qingchun, F., Xiu, W., Wengang, Z., Quan, Q. and Kai, J. (2012). A new strawberry harvesting robot for elevated-trough culture. International Journal of Agricultural and Biological Engineering, 5(2): 1-8.