بهینه‌سازی تولید و اصلاح خصوصیات سطحی غشاء نانوفیبری پلی‌سولفون ابگریز

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد- گروه علوم و صنایع غذایی- دانشکده مهندسی و فناوری کشاورزی - پردیس کشاورزی و منابع طبیعی -دانشگاه تهران

2 استاد گروه علوم و صنایع غذایی دانشکده مهندسی و فناوری کشاورزی پردیس کشاورزی و منابع طبیعی دانشگاه تهران

3 استادیار گروه علوم و صنایع غذایی- دانشکده مهندسی و فناوری کشاورزی- پردیس کشاورزی و منابع طبیعی - دانشگاه تهران

چکیده

هدف از تحقیق حاضر، مدل­سازی و بهینه­سازی پارامترهای دستگاه الکتروریسی برای تولید غشاء نانوالیافی با کاربرد در سیستم­های غشایی از پلیمر پلی­سولفون (PSF) با استفاده از روش سطح پاسخ می­باشد. برای این منظور، تاثیر ولتاژ (18-12 کیلو ولت)، سرعت جریان محلول پلیمری (6/0–3/0 میلی­لیتر در ساعت) و فاصله بین سوزن و جمع کننده (5/17-5/10 سانتی­متر) و اثر سورفکتانت غیر یونی Triton x-100 (TR-100) بر مورفولوژی و ساختار غشاء نانوالیافی مورد بررسی قرار گرفت. شرایط بهینه برای تولید نانوالیاف به این صورت می­باشد: ولتاژ اعمال شده 31/16 کیلوولت، سرعت جریان محلول پلیمری 39/0 میلی­لیتر در ساعت و فاصله الکتروریسی 45/15 سانتی­متر. تصاویر میکروسکوپ الکترونی روبشی (SEM) نشان داد با افزودن سورفکتانت، قطر نانوالیاف حدود 20 درصد کاهش یافته و خواص مورفولوژیکی نانوالیاف بهبود یافته و نانوالیاف یکدست و همگن تولید گردیده است. زاویه تماس غشاءهای نانوالیافی مورد ارزیابی قرار گرفت و نتایج بیانگر آبگریز بودن هر دو غشاء (PSF و PSF/TR-100) می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimizing Production and Modification of Surface Morphology of Nano-Fibrous Polysulfone Membranes

نویسندگان [English]

  • Amin Najafi 1
  • Zahra Emam-Djomeh 2
  • gholamreza Askari 3
1 MSc graduate- Department of Food science and Technology, Faculty of Agricultural Engineering and Technology- College of agriculture and Natural resources- University of Tehran
2 Professor, Department of Food science and Technology, Faculty of Agricultural Engineering and Technology- College of agriculture and Natural resources- University of Tehran
3 Assistant Professor, Department of Food science and Technology, Faculty of Agricultural Engineering and Technology- College of agriculture and Natural resources- University of Tehran
چکیده [English]

The scope of this research was to model and optimize the electrospun parameters for the production of nanofiber membrane from polysulfone (PSF) polymer using the response surface methodology (RSM) with application in membrane systems. For this purpose, the influence of applied voltage (12-18 KV), flow rate (0.3-0.6 mL/h), the distance between needle and collector (10.5-17.5 cm) and effect of non-ionic surfactant Triton x-100 (TR-100) on the morphology and structure of nanofibers membrane was investigated. The optimal conditions for the fabrication of nanofibers were found to be as follow: the voltage 16.31 kV, the flow rate 0.39 mL/h, and the spinning distance 15.45 cm. The results of SEM demonstrated that with the addition of the surfactant, the fiber diameter reduced about 20% and the morphological properties of PSF nanofiber improved and homogeneous nanofibers have been produced. The contact angle of the developed nanofibers demonstrated that their surfaces were hydrophobic (PSF and PSF/TR-100).

کلیدواژه‌ها [English]

  • : Electrospinning
  • Nanofiber Membrane
  • Surfactant
  • Polysulfone

Ahmadipourroudposht, M., Fallahiarezoudar, E., Yusof, N.M., Idris, A., 2015. Application of response surface methodology in optimization of electrospinning process to fabricate (ferrofluid/polyvinyl alcohol) magnetic nanofibers. Mater. Sci. Eng. C 50, 234–241.

Ahmed, R.M., 2017. Surface Characterization and Optical Study on Electrospun Nanofibers of PVDF/PAN Blends. Fiber Integr. Opt. 36, 78–90. https://doi.org/10.1080/01468030.2017.1280098

Ahmed, R.M., 2015. Surface and spectroscopic properties of CdSe/ZnS/PVC nanocomposites. Polym. Compos. 38, 749–758. https://doi.org/10.1002/pc.23634

Angammana, C.J., Jayaram, S.H., 2016. Fundamentals of electrospinning and processing technologies. Part. Sci. Technol. 34, 72–82. https://doi.org/10.1080/02726351.2015.1043678

Aykut, Y., Pourdeyhimi, B., Khan, S.A., 2013. Effects of surfactants on the microstructures of electrospun polyacrylonitrile nanofibers and their carbonized analogs. J. Appl. Polym. Sci. 130, 3726–3735. https://doi.org/10.1002/app.39637

Broumand, A., Emam-Djomeh, Z., Khodaiyan, F., Davoodi, D., Mirzakhanlouei, S., 2014a. Optimal fabrication of nanofiber membranes from ionized-bicomponent cellulose/polyethyleneoxide solutions. Int. J. Biol. Macromol. 66, 221–228. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2014.02.042

Broumand, A., Emam-Djomeh, Z., Khodaiyan, F., Davoodi, D., Mirzakhanlouei, S., 2014b. Optimal fabrication of nanofiber membranes from ionized-bicomponent cellulose/polyethyleneoxide solutions. Int. J. Biol. Macromol. 66, 221–228. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2014.02.042

Broumand, A., Emam-Djomeh, Z., Khodaiyan, F., Mirzakhanlouei, S., Davoodi, D., Moosavi-Movahedi, A.A., 2015. Nano-web structures constructed with a cellulose acetate/lithium chloride/polyethylene oxide hybrid: Modeling, fabrication and characterization. Carbohydr. Polym. 115, 760–767. https://doi.org/https://doi.org/10.1016/j.carbpol.2014.06.055

Dhakate, S.R., Singla, B., Uppal, M., Mathur, R.B., 2010. Effect of processing parameters on morphology and thermal properties of electrospun polycarbonate nanofibers. Adv. Mater. Lett. 1, 200–204.

Dobosz, K.M., Kuo-Leblanc, C.A., Martin, T.J., Schiffman, J.D., 2017. Ultrafiltration Membranes Enhanced with Electrospun Nanofibers Exhibit Improved Flux and Fouling Resistance. Ind. Eng. Chem. Res. 56, 5724–5733. https://doi.org/10.1021/acs.iecr.7b00631

Fleming, R.R., Pardini, L.C., Brito, C.A.R., Oliveira, M.S., Alves, N.P., Massi, M., 2011. Plasma treatment of polyacrylonitrile/vinyl acetate films obtained by the extrusion process. Polym. Bull. 66, 277–288. https://doi.org/10.1007/s00289-010-0318-6

Gupta, P., Elkins, C., Long, T.E., Wilkes, G.L., 2005. Electrospinning of linear homopolymers of poly(methyl methacrylate): Exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer (Guildf). 46, 4799–4810. https://doi.org/10.1016/j.polymer.2005.04.021

Heidari, M., Bahrami, H., Ranjbar-Mohammadi, M., 2017. Fabrication, optimization and characterization of electrospun poly(caprolactone)/gelatin/graphene nanofibrous mats. Mater. Sci. Eng. C 78, 218–229. https://doi.org/10.1016/J.MSEC.2017.04.095

Hinkelmann, K., n.d. Design and Analysis of Experiments.

Khuri, A.I., 2011. Response Surface Methodology BT  - International Encyclopedia of Statistical Science, in: Lovric, M. (Ed.), . Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1229–1231. https://doi.org/10.1007/978-3-642-04898-2_492

Kriegel, C., Arrechi, A., Kit, K., McClements, D.J., Weiss, J., 2008. Fabrication, Functionalization, and Application of Electrospun Biopolymer Nanofibers. Crit. Rev. Food Sci. Nutr. 48, 775–797. https://doi.org/10.1080/10408390802241325

Li, Z., Wang, C., 2013. One-Dimensional nanostructures. https://doi.org/10.1007/978-3-642-36427-3

Liao, Y., Wang, R., Tian, M., Qiu, C., Fane, A.G., 2013. Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J. Memb. Sci. 425–426, 30–39. https://doi.org/https://doi.org/10.1016/j.memsci.2012.09.023

Moghadam, B.H., Haghi, A.K., Kasaei, S., Hasanzadeh, M., 2015. Computational-Based Approach for Predicting Porosity of Electrospun Nanofiber Mats Using Response Surface Methodology and Artificial Neural Network Methods. J. Macromol. Sci. Part B 54, 1404–1425. https://doi.org/10.1080/00222348.2015.1090654

Myers, R.H., Montgomery, D.C., 2002. Response Surface Methodology: Process and Product in Optimization Using Designed Experiments, 1st ed. John Wiley {&} Sons, Inc., New York, NY, USA.

Noruzi, M., 2016. Electrospun nanofibres in agriculture and the food industry: a review. J. Sci. Food Agric. 96, 4663–4678. https://doi.org/10.1002/jsfa.7737

Pokorny, M., Novak, J., Rebicek, J., Klemes, J., Velebny, V., 2015. An Electrostatic Spinning Technology with Improved Functionality for the Manufacture of Nanomaterials from Solutions. Nanomater. Nanotechnol. 5, 17. https://doi.org/10.5772/60773

Rao, M.S., Kanatt, S.R., Chawla, S.P., Sharma, A., 2010. Chitosan and guar gum composite films: Preparation, physical, mechanical and antimicrobial properties. Carbohydr. Polym. 82, 1243–1247. https://doi.org/https://doi.org/10.1016/j.carbpol.2010.06.058

Ray, S., Lalman, J.A., 2011. Using the Box–Benkhen design (BBD) to minimize the diameter of electrospun titanium dioxide nanofibers. Chem. Eng. J. 169, 116–125.

Ray, S.S., Chen, S.-S., Hsu, H.-T., Cao, D.-T., Nguyen, H.-T., Nguyen, N.C., 2017. Uniform hydrophobic electrospun nanofibrous layer composed of polysulfone and sodium dodecyl sulfate for improved desalination performance. Sep. Purif. Technol. 186, 352–365. https://doi.org/http://dx.doi.org/10.1016/j.seppur.2017.06.032

Rogina, A., 2014. Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl. Surf. Sci. 296, 221–230. https://doi.org/10.1016/J.APSUSC.2014.01.098

Rupiasih, N.N., Suyanto, H., Sumadiyasa, M., Wendri, N., 2013. Study of effects of low doses UV radiation on microporous polysulfone membranes in sterilization process. Open J. Org. Polym. Mater. 3, 12.

Salarbashi, D., Mortazavi, S.A., Noghabi, M.S., Fazly Bazzaz, B.S., Sedaghat, N., Ramezani, M., Shahabi-Ghahfarrokhi, I., 2016. Development of new active packaging film made from a soluble soybean polysaccharide incorporating ZnO nanoparticles. Carbohydr. Polym. 140, 220–227. https://doi.org/10.1016/J.CARBPOL.2015.12.043

Salarbashi, D., Tafaghodi, M., Bazzaz, B.S.F., 2018. Soluble soybean polysaccharide/TiO2 bionanocomposite film for food application. Carbohydr. Polym. 186, 384–393. https://doi.org/https://doi.org/10.1016/j.carbpol.2017.12.081

Sarlak, N., Nejad, M.A.F., Shakhesi, S., Shabani, K., 2012. Effects of electrospinning parameters on titanium dioxide nanofibers diameter and morphology: An investigation by Box–Wilson central composite design (CCD). Chem. Eng. J. 210, 410–416. https://doi.org/https://doi.org/10.1016/j.cej.2012.08.087

Shokrollahzadeh, S., Tajik, S., 2018. Fabrication of thin film composite forward osmosis membrane using electrospun polysulfone/polyacrylonitrile blend nanofibers as porous substrate. Desalination 425, 68–76. https://doi.org/https://doi.org/10.1016/j.desal.2017.10.017

Suja, P.S., Reshmi, C.R., Sagitha, P., Sujith, A., 2017. Electrospun Nanofibrous Membranes for Water Purification. Polym. Rev. 57, 467–504. https://doi.org/10.1080/15583724.2017.1309664

Uzal, N., Ates, N., Saki, S., Bulbul, Y.E., Chen, Y., 2017. Enhanced hydrophilicity and mechanical robustness of polysulfone nanofiber membranes by addition of polyethyleneimine and Al2O3 nanoparticles. Sep. Purif. Technol. 187, 118–126. https://doi.org/http://dx.doi.org/10.1016/j.seppur.2017.06.047

Yolmeh, M., Jafari, S.M., 2017. Applications of Response Surface Methodology in the Food Industry Processes. Food Bioprocess Technol. 10, 413–433. https://doi.org/10.1007/s11947-016-1855-2

Yu, D.G., Chatterton, N.P., Yang, J.H., Wang, X., Liao, Y.Z., 2012. Coaxial electrospinning with triton X-100 solutions as sheath fluids for preparing PAN nanofibers. Macromol. Mater. Eng. 297, 395–401. https://doi.org/10.1002/mame.201100258

Zhang, X., Shi, F., Niu, J., Jiang, Y., Wang, Z., 2008. Superhydrophobic surfaces: from structural control to functional application. J. Mater. Chem. 18, 621–633.