استخراج پلی ساکارید پکتین از چوب مرکزی گردو و بررسى بازده و خصوصیات فیزیکوشیمیایى آن

نوع مقاله : مقاله پژوهشی

نویسندگان

استادیار گروه علوم و صنایع غذایی، واحد رودهن، دانشگاه آزاد اسلامی، رودهن، ایران

چکیده

گردو از مهمترین و ارزشمندترین محصولات کشاورزی کشور است. هدف از این پژوهش بررسی تاثیر سه متغیر pH (1، 5/1 و 2)، دما (60، 70 و 80 درجه سلسیوس) و زمان استخراج (60، 90 و 120 دقیقه) بر درصد بازده، درجه استریفیکاسیون و میزان گالاکتورونیک اسید پکتین استخراج شده از ضایعات چوب مرکزی گردوبود که از روش آماری سطح پاسخ استفاده گردید. مطابق با نتایج، شرایط بهینه استخراج با بیشترین بازده استخراج (32/14 درصد)، درجه استریفیکاسیون (03/64 درصد) و گالاکتورونیک اسید (62/63 درصد) متناسب با pH 68/1، دمای 80 درجه سلسیوس و زمان 120 دقیقه بود. روی نمونه­ی بهینه پکتین آزمون­های خاکستر کل، وزن مولکولی، خصوصیات امولسیفایری، رئولوژیکی و طیف سنجی مادون قرمزانجام گرفت. نتایج نشان داد خاکسترکل 14/1 درصد و وزن مولکولی نمونه بهینه پکتین 61/35 کیلو دالتون بود. این نمونه با خواص امولسیفایری مطلوب، رفتار سودوپلاستیک از خود نشان داد و نمودار طیف سنج مادون قرمز آن غنی از حضور گالاکتورونیک اسید بود.

کلیدواژه‌ها


عنوان مقاله [English]

Extraction of Pectin Polysaccharide from Walnut Heartwood and Evaluation of Its Yield and Physicochemical Properties

نویسندگان [English]

  • Marjan Nouri
  • mohsen mokhtarian
Department of Food Science and Technology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
چکیده [English]

Walnut is one of the most important and valuable agricultural products in the country. The aim of this study was to investigate the effects of three variables of pH values (1, 1.5 and 2), extraction temperatures (60, 70 and 80°C) and process times (60, 90 and 120 min) on yield, degree of esterification and galacturonic acid of pectin extracted from heartwood waste of walnut using response surface statistical method. Based on the results, optimum conditions for pectin extraction with the highest extraction yield (14.32%), degree of esterification (64.03%) and galacturonic acid (63.62 %) were associated with pH 1.68, process temperature of 80°C and extraction time of 120 min. Total ash, molecular weight, emulsifier, rheological and Fourier transform infrared spectroscopy assessments were carried out on pectin optimum sample. The results showed the total ash was 14.1% and MW of pectin optimum sample was 35.61 kDa. This sample, with suitable emulsifier properties, showed pseudoplastic behavior and its FTIR spectroscopy diagram was rich in galacturonic acid.

کلیدواژه‌ها [English]

  • Walnut Heart wood
  • Pectin
  • Esterification degree
  • Galacturonic acid
  • Waste
AOAC. (1995). Official methods of analysis, (15thed) edition. Association of Official Analytical Chemists, Washington, DC., USA.
Asgari, K., Labbafi, M., Khodaiyan, F., Kazemi, M., & Hosseini, S. S. (2019). High-methylated pectin from walnut processing wastes as a potential resource: Ultrasound assisted extraction and physicochemical, structural and functional analysis. International Journal of Biological Macromolecules (In Press)
Bagherian, H., Zokaee, F., Fouladitajar, A., & Mohtshamy, M. (2011). Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit. Chemical Engineering and Processing: Process Intensification, 50,1237-1243.
Chaharbaghi, E., Khodaiyan, F., & Hosseini, S. (2017). Optimization of pectin extraction from pistachio green hull as a new source. Carbohydrate Polymers, 171, 1-12.
Chan, S., & Choo, W. (2013). Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks. Food Chemistry, 141,3752–3758.
Cockburn, D. W., & Koropatkin, N. M. (2016). Polysaccharide degradation by the intestinal microbiota and its Influence on human health and disease. Journal of Molecular Biological, 14,9-23
Emaga, T., Ronkart, S. N., Robert, C., Wathelet, B., & Paquot, M. (2008). Characterisation of pectins extracted from banana peels (Musa AAA) under different conditions using an experimental design. Food Chemistry, 108, 463–471.
Espitia, P. J., Du, W., Avena-Bustillos, R. J., Soares, N. F., & McHugh, T. H. (2014). Edible films from pectin: Physical mechanical and antimicrobial properties - A review. Food Hydrocolloids, 35,287-296.
Fathi, B., Maghsoudlou, Y., Ghorbani, M., & Khomeiri, M. (2012). Effect of pH, temperature and time of acidic extraction on the yield and characterization of pectin obtained from pumpkin waste. Journal of Food Research, 22(4), 465-475. (In Farsi)
Fissore, E. N., Rojas, A. M., Gerschenson, L. N., & Williams, P. A. (2013). Butternut and beetroot pectins: Characterization and functional properties. Food Hydrocolloids, 31,172-182.
Fuentes, R. M., Femenia, A., Garau, M. C., Meza-Velázquez, J. A., Simal, S., & Rosselló, C. (2014). Ultrasound-assisted extraction of pectins from grape pomace using citric acid: A response surface methodology approach. Carbohydrate Polymers, 106,179–189.
Gnanasambandam, R., & Proctor, A. (2000). Determination of pectin degree of esterification by diffuse reflectance Fourier transforms infrared spectroscopy. Food Chemistry, 68,327–332.
Grassino, A. N., Brncˇic, M., Vikic´-Topic´D., Roca, S., Dent, M., & Brncˇic, S. R. (2016). Ultrasound assisted extraction and characterization of pectin from tomato waste. Food Chemistry, 198,93–100.
Gupta, S, R., Ravindranah, B., & Seshari, T, R. (1972). Juglandaceae: polyphenols of juglans nigra. Phytochem,11,2634-2636.
Hosseini, S., Khodaiyan, F., & Yarmand, M. (2016). Effect of acid extraction conditions on yield and quality characteristics of pectin from sour orange peel. Iranian Journal of Biosystem Engineering, 47(2), 231-242. (In Farsi)
Iglesias M. T., & Lozano, J. E. (2004). Extraction and characterization of sunflower pectin. Journal of Food Engineering, 62, 215–223.
Jafari, F., Khodaiyan, F., Kiani, H., & Hosseini, S. (2017). Pectin from carrot pomace: Optimization of extraction and physicochemical properties. Carbohydrate Polymers, 157,1315-1322.
Jannat, B., Oveisi, M. R., Sadeghi, N., Behzad, M., Behfar, A., Hajimahmoodi, M., & Shohada, M. R. (2016). Determination of Pectin in Sunflower and Its Application in Food Industry. Food Technology and Nutrition, 13(1), 25-34. (In Farsi)
Jiang, Y., Du, Y., Zhu, X., Xiong, H., Woo, M. W., & Hu, J. (2012). Physicochemical and comparative properties of pectins extracted from Akebia trifoliata var. australis peel. Carbohydrate Polymers, 87, 166- 1669.
Junter, G. A., Thébault, P., Lebrun, L. (2016). Polysaccharide-based antibiofilm surfaces. Acta Biomaterialia, 30,13–25.
Kazemi M., Khodaiyan F., & Hosseini S. S. (2019). Eggplant peel as a high potential source of high methylated pectin: Ultrasonic extraction optimization and characterization. LWT - Food Science and Technology, 105, 182-189.
Kliemann, E., Simas, K. N., Amante, E. R., Prudencio, S. E., Teofilo, R. F., Ferreira, M. C., Renata D. M., & Ambon, C. (2009). Optimisation of pectin acid extraction from passion fruit peel (Passiflora edulis flavicarpa) using response surface methodology. International Journal of Food Science and Technology, 44, 476–483.
Krivorotova, T., Cirkovas, A., Maciulyte, S., Staneviciene, R., Budriene, A. S., Serviene, E., & Sereikaite, J. (2016). Nisin-loaded pectin nanoparticles for food preservation. Food Hydrocolloids, 54,49-56.
Levigne, S., Ralet, M. C., & Thibault, J. F. (2002). Characterisation of pectins extracted from fresh sugar beet under different conditions using an experimental design. Carbohydrate Polymer, 49, 145-153.
Liu, L., Cao, J., Huang, J., Cai, Y., & Yao, J. (2010). Extraction of pectins with different degrees of esterification from mulberry branch bark. Bioresource Technology, 101(9), 3268–73.
Maa, S., Yu, S., Zheng, J., Wang, X. L., Bao, X., & Guo, Q. D. (2013). Extraction, characterization and spontaneous emulsifying properties of pectin from sugar beet pulp. Carbohydrate Polymers, 98, 750– 753.
Masmoudi, M.; Besbes, S.; Chaabouni, M.; Robert, C.; Paquot, M.; Blecker, C., & Attia, H. (2008). Optimization of pectin extraction from lemon by-product with acidified date juice using response surface methodology. Carbohydrate Polymers, 742, 185–192.
Mosayebi, V., Emam-Djomeh, Z., & Tabatabaei Yazdi, F. (2017). Optimization of extraction conditions of pectin by conventional method from black mulberry pomace. JFST, 62(14), 341-356. (In Farsi)
Muthusamy S., Manickam L. P., Murugan V., Chendrasekar M., & Pugazhendhi A. (2019). Pectin extraction from Helianthus annuus (sunflower) heads using RSM and ANN modelling by a genetic algorithm approach. International Journal of Biological Macromolecules,124, 750-758.
Mosayebi V., & Tabatabaei Yazdi F. (2018). Optimization of microwave assisted extraction (MAE) of pectin from black mulberry (Morus nigra L.) pomace. Journal of Food and Bioprocess Engineering, 1(1), 57-66.
Nouri M., & Mokhtarian M. (2020). Optimization of pectin extraction from walnut green husk and characterization of its physicochemical and rheological properties. Nutrition and Food Science Research 2020, 7(2), (In Press).
Pagán, J., Ibarz, A., Llorca, M., Pagán, A., & Barbosa-Cánovas, G. V. (2001). Extraction and characterization of pectin from stored peach pomace. Food Research International, 34(7), 605-612.
Pasandide B., Khodaiyan F., Mousavi Z., & Hosseini S. S. (2018). A Box-Behnken experimental design for microwave assisted extraction optimization of pectin from citron peel. Journal of Food and Bioprocess Engineering, 1(2), 149-156.
Raji, Z., Khodaiyan, F., Rezaei, K., Kiani, H., & Hosseini, S. (2017). Extraction optimization and physicochemical properties of pectin from melon peel. International Journal of Biological Macromolecules, 98(17),709-716.
Rascón-Chu, A., Martínez-López, A. L., Carvajal-Millán, E., Ponce de León- Renova, N. E., Márquez-Escalante, J., & Romo-Chacón, A. (2009). Pectin from low quality ‘Golden Delicious’ apples: composition and gelling capability. Food Chemistry, 116,101-103.
Santos, J. D. G., Espeleta, A. F., Branco, A., & Assis, S. (2013). Aqueous extraction of pectin from sisal waste. Carbohydrate Polymers, 92(2),1997-2001.
Schemin, M. H. C., Fertonani, H. C. R., Waszczynskyj, N., & Wosiacki, G.(2006). Extraction of pectin from apple pomace. Brazilian Archives of Biology and Technology, 48,259–266.
Vriesmann, L. C., & Petkowicz, C. L. O. (2013). Highly acetylated pectin from cacao pod husks (Theobroma cacao L.) forms gel. Food Hydrocolloids, 33, 58-65.
Wangorsch, A., Jamin A., Lidholm, J., Gräni, N., Lang, C., Ballmer-Weber, B., Stefan, V., & Scheurer, S. (2017). Identification and implication of an allergenic PR-10 protein from walnut in birch pollen associated walnut allergy. Molecular Nutrition and Food Research, 61 (4),1-24.
Weska, R. F., Moura, J. M., Batista. L. M., Rizzi, J., & Pinto. L. A. A. (2007). Optimization of deacetylation in the production of chitosan from shrimp wastes: use of response surface methodology. Journal of Food Engineering, 80,749–753.
Woncho, C., Lee, D., & Kim, C. (2003) Concentration and purification of soluble pectin from mandarin peels using crossflow microfiltration system. Carbohydrate Polymers, 54,21–26.
Yapo, B. M., Robert, C., Etienne, I., Wathelet, B., & Paquot, M. (2007). Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts. Food Chemistry, 100,1356–1364.
Yuliarti, O., Matia-Merino, L., Goh, K. T., Mawson, J., Williams M. K., & Brennan, C. (2015). Characterization of gold kiwifruit pectin from fruit of different maturities and extraction methods. Food Chemistry, 166, 479–485.