تعیین فاصله مناسب بین صفحه جاذب و پوشش یک لایه در جمع‌کننده‌های خورشیدی صفحه تخت به روش عددی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی ماشین های کشاورزی و مکانیزاسیون، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

2 گروه مهندسی ماشینهای کشاورزی و مکانیازسیون-دانشگاه علوم کشاورزی و منابع طبیعی خوزستان-ملاثانی

چکیده

بیشترین اتلاف انرژی در جمع­کننده­های صفحه تخت مربوط به افت گرمایی از بالاست. متغیرهای دمای سطح جاذب، دمای محیط، سرعت وزش باد، فاصله بین صفحه جاذب تا پوشش، طول و زاویه جمع­کننده بر این افت تأثیرگذار هستند. در این پژوهش با در نظر گرفتن اطلاعات بلند مدت هواشناسی و روابط توسعه داده شده در پژوهش­های گذشته برای افت از بالا در جمع­کننده­های خورشیدی صفحه تخت شامل افت­های همرفت، هدایتی و تابشی، محاسبات در قالب کدهای فرترن انجام شد. نتایج نشان داد مقدار مناسب فاصله بین صفحه جاذب و پوشش تک لایه در محدوده 11 تا 38 میلی­متر برای چند شهر کشور است. همچنین تحلیل حساسیت متغیرها بر افت از بالا نشان داد، ترتیب آنها از بیشترین به کمترین عبارت است از: سرعت وزش باد، فاصله پوشش تا صفحه جاذب، زاویه شیب جمع­کننده، طول جمع­کننده، دمای صفحه جاذب و دمای محیط.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of the Proper Distance between the Absorber Plate and One-layer Cover in Flat-plate Solar Collectors Using Numerical Method

نویسندگان [English]

  • Rouhollah Farhadi 1
  • Morteza Taki 2
1 Department of Agricultural Machinery and Mechanization, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
2 Department of agricultural machinery and mechanization- Agricultural Sciences and Natural Resources University of Khuzestan-Mollasani
چکیده [English]

The Maximum energy loss in flat-plate solar collectors is due to top heat loss. The variables of absorber plate temperature, ambient temperature, wind speed, the distance between the absorber plate and the cover, collector length, and tilt angle are effective. In this research, considering the long-term meteorological data and developed relations for the top loss in flat-plate solar collectors in previous researches, including convection, conduction and radiation losses, calculations were performed in the form of Fortran codes. Results showed that the proper value for the distance between the absorber plate and one-layer cover has the range of 11 to 38 mm for some cities of the country. In addition, the sensitivity analysis of the top loss showed that the order of variables from maximum to minimum is wind speed, the distance between the absorber plate and the cover, collector tilt angle, collector length, absorbent plate temperature and ambient temperature.

کلیدواژه‌ها [English]

  • Air gap
  • Renewable energies
  • Sensitivity analysis
  • Shadow
  • Top loss
Abdolzadeh, Z..Abdolzadeh, M..Fadaeinedjad, R. (2014). Optimum slope angles and the corresponding uncertainties for a solar collector. International Journal of Ambient Energy. 37(1). 46-54.
Agarwal, V.K..Larson, D.C. (1981). Calculation of the top loss coefficient of a flat-plate collector. Solar Energy. 27(1). 69-71.
Akhtar, N..Mullick, S. (2007). Computation of glass-cover temperatures and top heat loss coefficient of flat-plate solar collectors with double glazing. Energy. 32(7). 1067-1074.
Akhtar, N..Mullick, S.C. (1999). Approximate method for computation of glass cover temperature and top heat-loss coefficient of solar collectors with single glazing. Solar Energy. 66(5). 349-354.
Chaharmahal va Bakhtiari Meteorological Administration. 2018. Monthly Data of country. http://www.chbmet.ir. (Accessed November 6 2018).
Deng, Y.-c..Zhao, Y.-h..Quan, Z.-h..Wang, L.-c. (2012). Numerical Study on Natural Convection Heat Transfer of Air Layer Inside the Flat Plate Solar Collector. Building Science. 28(10). 84-87.
Duffie, J.A..Beckman, W.A. (2013). Solar Engineering of Thermal Processes. Hoboken, New Jersey: John Wiley & Sons, Inc.
Eismann, R. (2015). Accurate analytical modeling of flat plate solar collectors: Extended correlation for convective heat loss across the air gap between absorber and cover plate. Solar Energy. 122. 1214-1224.
El-Sebah, A. (1997). Thermal performance of a box-type solar cooker with outer-inner reflectors. Energy. 22(10). 969-978.
Farhadi, R..Taki, M. (2020). The energy gain reduction due to shadow inside a flat-plate solar collector. Renewable Energy. 147. 730-740.
Francey, J.L.A..Paraioannou, J. (1985). Wind-related heat losses of a flat-plate collector. Solar Energy. 35(1). 15-19.
Garg, H.P..Datta, G. (1984). The top loss calculation for flat plate solar collectors. Solar Energy. 32(1). 141-143.
Jafarkazemi, F..Saadabadi, S.A..Pasdarshahri, H. (2012). The optimum tilt angle for flat-plate solar collectors in Iran. Journal of Renewable and Sustainable Energy. 4(1). 1-15.
Kalogirou, S.A. (2014). Solar Energy Engineering: processes and systems, Second Edition ed. California: Academic Press.
Klein, S.A. (1975). Calculation of flat-plate collector loss coefficients. Solar Energy. 17(1). 79-80.
Kumar, S..Mullick, S.C. (2012). Glass cover temperature and top heat loss coefficient of a single glazed flat plate collector with nearly vertical configuration. Ain Shams Engineering Journal. 3(3). 299-304.
Malhotra, A..Garg, H..Palit, A. (1981). Heat loss calculation of flat plate solar collectors. Journal of Thermal Engineering. 2(2). 59-62.
Mullick, S.C..Samdarshi, S.K. (1988). An Improved Technique for Computing the Top Heat Loss Factor of a Flat-Plate Collector With a Single Glazing. Journal of Solar Energy Engineering. 110(4). 262-267.
Muneer, T..Hawas, M. (1981). Calculation of the top loss coefficient by the network method and applications to solar collectors. Energy. 6(10). 971-981.
Nahar, N.M..Garg, H.P. (1980). Free convection and shading due to gap spacing between an absorber plate and the cover glazing in solar energy flat-plate collectors. Applied Energy. 7(1). 129-145.
Nahar, N.M..Gupta, M.P. (1989). Studies on gap spacing between absorber and cover glazing in flat plate solar collectors. International Journal of Energy Research. 13(6). 727-732.
Pourfayaz, F..Shirmohammadi, R..Maleki, A..Kasaeian, A. (2020). Improvement of solar flat‐plate collector performance by optimum tilt angle and minimizing top heat loss coefficient using particle swarm optimization. Energy Science & Engineering.
Sadri, M.S., 2014. Evaluation of solar radiation, clearness index and determining the optimum tilt angle in flat-plate solar collector in Hamedan, Department of Mechanical Engineering. Kashan University, Kashan.
Samdarshi, S.K..Mullick, S.C. (1990). Analysis of the top heat loss factor of flat plate solar collectors with single and double glazing. International Journal of Energy Research. 14(9). 975-990.
Sharafeldin, M.A..Gróf, G..Mahian, O. (2017). Experimental study on the performance of a flat-plate collector using WO3/Water nanofluids. Energy. 141. 2436-2444.
Subiantoro, A..Ooi, K.T. (2013). Analytical models for the computation and optimization of single and double glazing flat plate solar collectors with normal and small air gap spacing. Applied Energy. 104. 392-399.
Swinbank, W.C. (1963). Long-wave radiation from clear skies. Quarterly Journal of the Royal Meteorological Society. 89(381). 339-348.
Vestlund, J..Rönnelid, M..Dalenbäck, J.-O. (2009). Thermal performance of gas-filled flat plate solar collectors. Solar Energy. 83(6). 896-904.