بهینه‌سازی استخراج پکتین از تفاله غوره با استفاده از اسید سیتریک و بررسی خصوصیات فیزیکوشیمیایی آن

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و مهندسی صنایع غذایی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج، ایران

چکیده

در این پژوهش، تفاله غوره به­عنوان یک منبع ارزشمند جهت تولید پکتین با استفاده از روش استخراج اسیدی مورد بررسی قرار گرفت. بدین منظور از طرح باکس-بنکن با 4 متغیر مستقل در 3 سطح (زمان (60 تا 90 دقیقه)، دما (70 تا 90 درجه سلسیوس)، pH (5/1 تا 0/3) و نسبت مایع به جامد (20 تا 40 حجمی/وزنی)) برای بهینه­سازی راندمان تولید پکتین استفاده شد که بالاترین راندمان تولید در شرایط بهینه (زمان 85 دقیقه، دمای 90 درجه سلسیوس، pH برابر با 5/1 و نسبت مایع به جامد 20 (حجمی/وزنی)) برابر با 0/1 ± 1/26 درصد بود. نتایج نشان داد که پکتین تفاله غوره دارای درجه استری برابر با 6/51 درصد، محتوای گالاکتورونیک اسید برابر با 0/66 درصد، فعالیت امولسیفایری 2/57 درصد بوده و همچنین پایداری امولسیون مطلوبی از خود نشان داد. طیف­ FT-IR حضور پکتین غنی از زنجیره گالاکتورونیک اسید استری شده را به اثبات رساند.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of Pectin Xxtraction from Unriped Grape Pomace Using Citric Acid and Investigation of Its Physicochemical Properties

نویسندگان [English]

  • Mehdi Rezaei
  • Faramarz Khodaiyan
  • Zeinab Mousavi
  • Seyed Saeid Hosseini
  • Milad Kazemi
Department of Food Science and Engineering, Faculty of Agricultural Engineering & Technology, University of Tehran, Karaj, Iran
چکیده [English]

In this study, unrippen grape pomace as a valuable source for pectin extraction was investigated using acidic extraction method. For this purpose, Box-Behnken design with four independent variables in three levels (Time (30-90 min), Temperature (70-90℃), pH (1.5-3.0) and liquid to solid ratio (20-40 v/w)) was used to optimize the pectin extraction yield that the highest pectin extraction yield in the optimum conditions (time of  85 min, the temperature of 90℃, pH of 1.5 and liquid to solid ratio of 20 (v/w)) was 26.1 ± 1.0%. The results showed that unrippen grape pomace pectin had degree of esterification of 51.6%, galacturonic acid content of 66.1%, emulsifying activity of 57.2%, and also showed favorable emulsion stability. The FT-IR spectrum confirmed the presence of esterified poly galacturonic acid structure in pectin sample.

کلیدواژه‌ها [English]

  • Unripe grape pomace
  • Optimization
  • Acidic extraction
  • Physicochemical properties
Bagherian, H., Ashtiani, F. Z., Fouladitajar, A. & Mohtashamy, M. (2011). Comparisons between conventional, microwave-and ultrasound-assisted methods for extraction of pectin from grapefruit. Chemical Engineering and Processing: Process Intensification, 50(11-12), 1237-1243.
Bayar, N., Kriaa, M. & Kammoun, R. (2016). Extraction and characterization of three polysaccharides extracted from Opuntia ficus indica cladodes. International Journal of Biological Macromolecules, 92, 441-450.
Bayar, N., Bouallegue, T., Achour, M., Kriaa, M., Bougatef, A. & Kammoun, R. (2017). Ultrasonic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal: Optimization of experimental conditions and evaluation of chemical and functional properties. Food Chemistry, 235, 275-282.
Bayar, N., Friji, M. & Kammoun, R. (2018). Optimization of enzymatic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal. Food Chemistry, 241, 127-134.
Bitaraf, M. S., Khodaiyan, F., Mohammadifar, M. A. & Mousavi, S. M. (2012). Application of response surface methodology to improve fermentation time and rheological properties of probiotic yogurt containing Lactobacillus reuteri. Food and Bioprocess Technology, 5(4), 1394-1401.
Blumenkrantz, N. & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Analytical biochemistry, 54(2), 484-489.
Chaouch, M. A., Hafsa, J., Rihouey, C., Le Cerf, D., & Majdoub, H. (2015). Depolymerization of polysaccharides from Opuntia ficus indica: Antioxidant and antiglycated activities. International Journal of Biological Macromolecules, 79, 779–786.
Colodel, C. & de Oliveira Petkowicz, C. L. (2019). Acid extraction and physicochemical characterization of pectin from cubiu (Solanum sessiliflorum D.) fruit peel. Food Hydrocolloids, 86, 193-200.
Dalev, P.G. & Simeonova, L.S. (1995). Emulsifying properties of protein–pectin complexes and their use in oil‐containing foodstuffs. Journal of the Science of Food and Agriculture, 68(2), 203–206.
FAO. (2010). Food and Agricultural Organization of United Nations: Economic and Social Department: The Statistical Division.
Grassino, A. N., Brnčić, M., Vikić-Topić, D., Roca, S., Dent, M. & Brnčić, S. R. (2016). Ultrasound-assisted extraction and characterization of pectin from tomato waste. Food Chemistry, 198, 93–100.
Hosseini, S. S., Khodaiyan, F. & Yarmand, M. S. (2016a). Optimization of microwave-assisted extraction of pectin from sour orange peel and its physicochemical properties. Carbohydrate Polymers, 140, 59–65.
Hosseini, S. S., Khodaiyan, F. & Yarmand, M. S. (2016b). Effect of acid extraction conditions on yield and quality characteristics of pectin from sour orange peel. Iranian Journal of Bipsystem Engineering, 47(2), 231–242. (In Farsi)
Hosseini, S. S., Khodaiyan, F. & Yarmand, M. S. (2016c). Aqueous extraction of pectin from sour orange peel and its preliminary physicochemical properties. International Journal of Biological Macromolecules, 82, 920-926.
Hosseini, S. S., Khodaiyan, F., Kazemi, M. & Najari, Z. (2019). Optimization and characterization of pectin extracted from sour orange peel by ultrasound-assisted method. International Journal of Biological Macromolecules, 125, 621-629.
Jafari, F., Khodaiyan, F., Kiani, H. & Hosseini, S. S. (2017). Pectin from carrot pomace: Optimization of extraction and physicochemical properties. Carbohydrate Polymers, 157, 1315-1322.
Karabiyikli, Ş. & Öncül, N. (2016). Inhibitory effect of unripe grape products on foodborne pathogens. Journal of Food Processing and Preservation, 40(6), 1459-1465.
Kazemi, M., Khodaiyan, F., Labbafi, M., Hosseini, S. S. & Hojjati, M. (2019a). Pistachio green hull pectin: Optimization of microwave-assisted extraction and evaluation of its physicochemical, structural and functional properties. Food Chemistry, 271, 663-672.
Kazemi, M., Khodaiyan, F. & Hosseini, S. S. (2019b). Utilization of food processing wastes of eggplant as a high potential pectin source and characterization of extracted pectin. Food Chemistry, 294, 339-346.
Kazemi, M., Khodaiyan, F. & Hosseini, S. S. (2019c). Eggplant peel as a high potential source of high methylated pectin: Ultrasonic extraction optimization and characterization. LWT, 105, 182-189.
Kazemi, M., Khodaiyan, F., Hosseini, S. S. & Najari, Z. (2019d). An integrated valorization of industrial waste of eggplant: Simultaneous recovery of pectin, phenolics and sequential production of pullulan. Waste Management, 100, 101-111.
Kostalova, Z., Hromadkova, Z., Ebringerova, A., Polovka, M., Michaelsen, T. E. & Paulsen, B. S. (2013). Polysaccharides from the Styrian oilpumpkin with antioxidant and complement-fixing activity. Industrial Crops and Products, 41, 127– 133.
Liew, S. Q., Chin, N. L. & Yusof, Y. A. (2014). Extraction and characterization of pectin from passion fruit peels. Agriculture and Agricultural Science Procedia, 2, 231-236.
Liu, L., Fishman, M. L. & Hicks, K. B. (2007). Pectin in controlled drug delivery–a review. Cellulose, 14(1), 15-24.
Liu, L., Cao, J., Huang, J., Cai, Y. & Yao, J. (2010). Extraction of pectins with different degrees of esterification from mulberry branch bark. Bioresource Technology, 101(9), 3268-3273.
Marić, M., Grassino, A. N., Zhu, Z., Barba, F. J., Brnčić, M. & Brnčić, S. R. (2018). An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends in Food Science & Technology, 76, 28-37.
Maran, J. P., Sivakumar, V., Thirugnanasambandham, K. & Sridhar, R. (2013). Optimization of microwave-assisted extraction of pectin from orange peel. Carbohydrate Polymers, 97(2), 703-709.
Maran, J. P., Sivakumar, V., Thirugnanasambandham, K. & Sridhar, R. (2014). Microwave-assisted extraction of pectin from waste Citrullus lanatus fruit rinds. Carbohydrate Polymers, 101, 786-791.
Mohnen, D. (2008). Pectin structure and biosynthesis. Current Opinion in Plant Biology, 11(3), 266-277.
Öncül, N. & Karabiyikli, Ş. (2015). Factors affecting the quality attributes of unripe grape functional food products. Journal of Food Biochemistry, 39(6), 689-695.
Pasandide, B., Khodaiyan, F., Mousavi, Z. & Hosseini, S. S. (2018). Pectin extraction from citron peel: optimization by Box–Behnken response surface design. Food Science and Biotechnology, 27(4), 997–1005.
Qiu, L. P., Zhao, G. L., Wu, H., Jiang, L., Li, X. F. & Liu, J. J. (2010). Investigation of combined effects of independent variables on extraction of pectin from banana peel using response surface methodology. Carbohydrate Polymers, 80(2), 326-331.
Raji, Z., Khodaiyan, F., Rezaei, K., Kiani, H. & Hosseini, S. S. (2017). Extraction optimization and physicochemical properties of pectin from melon peel. International Journal of Biological Macromolecules, 98, 709-716.
Santos, J. D. G., Espeleta, A. F., Branco, A. & de Assis, S. A. (2013). Aqueous extraction of pectin from sisal waste. Carbohydrate Polymers, 92(2), 1997-2001.
Shao, P., Wang, P., Niu, B. & Kang, J. (2018). Environmental stress stability of pectin-stabilized resveratrol liposomes with different degree of esterification. International Journal of Biological Macromolecules, 119, 53-59.
Shojaee‐Aliabadi, S., Hosseini, S. M., Tiwari, B., Hashemi, M., Fadavi, G. & Khaksar, R. (2013). Polyphenols content and antioxidant activity of Ghure (unripe grape) marc extract: influence of extraction time, temperature and solvent type. International Journal of Food Science & Technology, 48(2), 412-418.
Swamy, G. J. & Muthukumarappan, K. (2017). Optimization of continuous and intermittent microwave extraction of pectin from banana peels. Food Chemistry, 220, 108-114.
Wang, W., Ma, X., Xu, Y., Cao, Y., Jiang, Z., Ding, T., Ye, X. & Liu, D. (2015). Ultrasound-assisted heating extraction of pectin from grapefruit peel: Optimization and comparison with the conventional method. Food Chemistry, 178, 106-114.
Wang, W., Ma, X., Jiang, P., Hu, L., Zhi, Z., Chen, J., Ding, T., Ye, X. & Liu, D. (2016). Characterization of pectin from grapefruit peel: A comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocolloids, 61, 730-739.
Willats, W. G., Knox, J. P. & Mikkelsen, J. D. (2006). Pectin: new insights into an old polymer are starting to gel. Trends in Food Science and Technology, 17(3), 97-104.
Xu, Y., Zhang, L., Bailina, Y., Ge, Z., Ding, T., Ye, X. & Liu, D. (2014). Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel. Journal of Food Engineering, 126, 72-81.
Yapo, B. M., Robert, C., Etienne, I., Wathelet, B. & Paquot, M. (2007). Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts. Food Chemistry, 100(4), 1356-1364.