Abdolkader, T. M., & Alahdal, A. G. (2018). Performance optimization of single-layer and double-layer high-k gate nanoscale ion-sensitive field-effect transistors. Sensors and Actuators, B: Chemical, 259, 36–43.
Akbari, E., Moradi, R., Afroozeh, A., Alizadeh, A., & Nilashi, M. (2019). A new approach for prediction of graphene based ISFET using regression tree and neural network. Superlattices and Microstructures, 130, 241–248.
Baronas, R., Ivanauskas, F., Maslovskis, R., & Vaitkus, P. (2004). An analysis of mixtures using amperometric biosensors and artificial neural networks. Journal of Mathematical Chemistry, 36(3), 281–297.
Baronas, Romas, Ivanauskas, F., Maslovskis, R., Radavicius, M., & Vaitkus, P. (2007). Locally weighted neural networks for an analysis of the biosensor response. Kybernetika, 43(1), 21–30.
Bergveld, P. (1970). Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Transactions On Bio-Medical Engineering, 1, 70-71.
Bousse, L., Bousse, L., De Rood, N. F., & Bergveld, P. (1983). Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface. IEEE Transactions On Electron Devices, 30(10), 1263–1270.
Choi, B., Lee, J., Yoon, J., Ahn, J.-H., Park, T. J., Kim, D. M. & Choi, S.-J. (2015). Tcad-based simulation method for the electrolyte-insulator-semiconductor field-effect transistor. IEEE Transactions On Electron Devices, 62(3), 1072–1075.
Daniel, M., Janicki, M., & Napieralski, A. (2003). Simulation of ion sensitive transistors using a spice compatible model. Proceedings of IEEE Sensors, 2(1), 543–548.
Dzyadevych, S. V., Soldatkin, A. P., El’skaya, A. V., Martelet, C., & Jaffrezic-Renault, N. (2006). Enzyme biosensors based on ion-selective field-effect transistors. Analytica Chimica Acta, 568(1–2), 248–258.
El-Grour, T., Najari, M., & El-Mir, L. (2018). A novel model for graphene-based ion-sensitive field-effect transistor. Journal of Computational Electronics, 17(1), 297–303.
Ferreira, L. S., De Souza, M. B., & Folly, R. O. M. (2001). Development of an alcohol fermentation control system based on biosensor measurements interpreted by neural networks. Sensors and Actuators, B: Chemical, 75(3), 166-171.
Iqbal, S. Z., Jinap, S., Pirouz, A. A., & Ahmad Faizal, A. R. (2015). Aflatoxin M1 in milk and dairy products, occurrence and recent challenges: A review. Trends in Food Science and Technology, 46(1), 110-119.
Jun, Z., Yu-An, T., Xue-Lan, Z., & Jun, L. (2010). An improved dynamic structure-based neural networks determination approaches to simulation optimization problems. Neural Computing and Applications, 19(6), 883–901.
Lin, C., & Chen, S. (2019). Design of highly sensitive guided-wave surface plasmon resonance biosensor with deep dip using genetic algorithm. Optics Communications, 445, 155–160.
Meena, A., Eswari, A., & Rajendr, L. (2011). Mathematical modeling of biosensors: Enzyme-substrate interaction and biomolecular interaction. In P. A. Serra (Ed.), New Perspectives in Biosensors Technology and Applications, (pp 215-228). BoD–Books on Demand.
Mirjalili, S. (2019). Genetic Algorithm. In S. Mirjalili (Ed.), Evolutionary Algorithms and Neural Networks (pp. 43–55). Springer, Cham.
Nautiyal, L., Shivach, P., & Ram, M. (2018). Optimal Designs by Means of Genetic Algorithms. In M. Ram & J. P. Davim (Eds), Soft Computing Techniques and Applications in Mechanical Engineering (pp. 151–161). IGI Global.
Pachauri, V., & Ingebrandt, S. (2016). Biologically sensitive field-effect transistors: from ISFETs to NanoFETs. In P. Estrela (Ed.), Biosensor Technologies For Detection Of Biomolecules (Vol. 60, pp. 81–90). Portland Press LTD.
Passeri, D., Morozzi, A., Kanxheri, K., & Scorzoni, A. (2015). Numerical simulation of ISFET structures for biosensing devices with TCAD tools. Biomedical Engineering Online, 14(2).
Rowe, J. E. (2015). Genetic Algorithms. In J. Kacprzyk & W. Pedrycz (Eds.). Springer Handbook of Computational Intelligence (pp. 825–844). Berlin, Heidelberg: Springer Berlin Heidelberg.
Sharma, P. K., Thakur, H. R., & Dutta, J. C. (2017). Modeling and simulation of carbon nanotube-based dual-gated enzyme field effect transistor for acetylcholine detection. Journal of Computational Electronics, 16(3), 584–592.
Sheliakina, M., Arkhypova, V., Soldatkin, O., Saiapina, O., Akata, B., & Dzyadevych, S. (2014). Urease-based ISFET biosensor for arginine determination. Talanta, 121, 18–23.
Shoorideh, K., & Chui, C. O. (2012). Optimization of the Sensitivity of FET-Based Biosensors via Biasing and Surface Charge Engineering. IEEE Transactions On Electron Devices, 59(11), 3104–3110.
Soo-Won, C., & Bathe, K. J. (1989). On automatic mesh construction and mesh refinement in finite element analysis. Computers and Structures, 32(3–4), 911–936.
Stepurska, K. V., Soldatkin, O. O., Kucherenko, I. S., Arkhypova, V. M., Dzyadevych, S. V., & Soldatkin, A. P. (2015). Feasibility of application of conductometric biosensor based on acetylcholinesterase for the inhibitory analysis of toxic compounds of different nature. Analytica Chimica Acta, 854, 161–168.
Temple-Boyer, P., Le Gal, J., Pourciel-Gouzy, M. L., Sant, W., & Martinez, A. (2006). Modelling of EnFETs for the creatinine detection. Sensors And Actuators B-Chemical, 118(1–2), 47–52.
Wang, G. G., & Shan, S. (2007). Review of metamodeling techniques in support of engineering design optimization. Journal of Mechanical Design, Transactions of the ASME, 129(4), 370–380.
Wang, L. (2005). A hybrid genetic algorithm-neural network strategy for simulation optimization. Applied Mathematics and Computation, 170(2), 1329–1343.
Zeggai, O., Belarbi, M., Ouledabbes, A., & Mouloudj, H. (2019). Modeling of a micro-biological sensor field effect for the enzymatic detection of glucose. International Journal of Modern Physics B, 33(25).