مدل‌سازی ریاضی ترانزیستور اثر میدان حساس یونی و بهینه‌سازی بر پایه شبیه‌سازی و فرامدل برای تشخیص آفلاتوکسین B1

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی ماشین‌های کشاورزی، دانشکده مهندسی و فناوری، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

2 گروه مهندسی ماشین‌های کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران.

چکیده

مدل‌سازی ریاضی ابزاری قدرتمند جهت پیش‌بینی پاسخ ترانزیستور اثرمیدان حساس به یون (ISFET) و بهینه‌سازی پارامترهای موثر بر عملکرد آن است. در این پژوهش مقادیر بهینه پارامترهای جریان درین، ولتاژ درین، غلظت اولیه سوبسترا و غلظت اولیه آنزیم به منظور به دست آوردن پاسخ ماکزیمم ISFET در تشخیص آفلاتوکسین B1 (AFB1) تعیین شدند. بهینه‌سازی با به‌کارگیری الگوریتم ژنتیک و بر پایه حل عددی معادله‌های دیفرانسیل حاکم ISFET به روش المان محدود در نرم‌افزار کامسول انجام شد. تابع هدف مورد استفاده در الگوریتم ژنتیک نیز با جایگزینی مدل شبیه‌سازی شده توسط فرامدل شبکه عصبی مصنوعی تعریف شد. نتایج به‌دست آمده نشان داد مدل شبیه‌سازی شده  ISFET با استفاده از روش المان محدود در مقایسه با آزمایش تجربی، دارای میانگین درصد خطای مطلق (MAPE) برابر با 06/1 درصد در پیش‌بینی پاسخ ISFET است. با استفاده از مدل المان محدود، 1296 آزمایش برای دست‌یابی به پایگاه داده مورد نیاز جهت آموزش شبکه عصبی شبیه‌سازی شد. پس از ارزیابی ساختار‌های مختلف شبکه عصبی مشخص شد شبکه عصبی آموزش دیده با ساختار (4-45-1) دارای میانگین درصد خطای مطلق (MAPE) برابر با 04/0، 07/0 و 05/0 درصد به ترتیب در فازهای آموزش، اعتبارسنجی و آزمایش است. نتایج بهینه‌سازی ISFET نشان داد با استفاده از مقادیر بهینه پارامتر‌های جریان درین، ولتاژ درین، غلظت اولیه سوبسترا و غلظت اولیه آنزیم تعیین شده توسط الگوریتم ژنتیک حداکثر پاسخ ISFET برابر با 440/44 درصد به‌دست آمده است.

کلیدواژه‌ها


عنوان مقاله [English]

Mathematical Modeling of Ion Sensitive Field Effect Transistor and Metamodel Based Optimization Simulation for Detection of Aflatoxin B1

نویسندگان [English]

  • Sayed Javad Sajadi 1
  • Soleyman Hosseinpour 1
  • shahin rafiee 2
1 Department of Agricultural Machinary Engineering , Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran.
2 Department of Agricultural Machinary Engineering , Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran.
چکیده [English]

Mathematical modeling is a powerful tool for prediction of Ion Sensitive Field Effect Trnsistor (ISFET) response and optimization of its functional parameters. In this study the optimal values of drain current, drain voltage and initial concentrations of substrate and enzyme parameters were determined to achieve maximum of ISFET response for detection of Aflatoxin B1 (AFB1). Optimization was performed by using Genetic Algorithm (GA) and based on numerical solution of ISFET governing differential equations by means of Finite Element Method (FEM) and COMSOL Multiphysics software. The objective function of GA was defined through substituting simulated model by Artificial Neural Network (ANN) metamodel. The results showed that ISFET simulated FEM model has a MAPE equal to 1.06 % in prediction of ISFET response compared with experimental results. With FEM model, 1296 virtual experiments were simulated to achieve necessary data base for train ANN metamodel. By evaluation of different ANN structures, trained ANN with 4-45-1 structure was selected which has MAPE equal to 0.04 %, 0.07% and 0.05% at train, validation and test phase respectively. ISFET optimization results states that by using of GA determined optimal values of drain current, drain voltage and initial concentrations of substrate and enzyme parameters, extremum response of ISFET equal to 44.44 % was achieved. 

کلیدواژه‌ها [English]

  • Artificial Neural Network
  • Finite Element Method
  • Genetic Algorithm
  • ISFET
  • Mathematical Modeling
Abdolkader, T. M., & Alahdal, A. G. (2018). Performance optimization of single-layer and double-layer high-k gate nanoscale ion-sensitive field-effect transistors. Sensors and Actuators, B: Chemical, 259, 36–43.
Akbari, E., Moradi, R., Afroozeh, A., Alizadeh, A., & Nilashi, M. (2019). A new approach for prediction of graphene based ISFET using regression tree and neural network. Superlattices and Microstructures, 130, 241–248.
Baronas, R., Ivanauskas, F., Maslovskis, R., & Vaitkus, P. (2004). An analysis of mixtures using amperometric biosensors and artificial neural networks. Journal of Mathematical Chemistry, 36(3), 281–297.
Baronas, Romas, Ivanauskas, F., Maslovskis, R., Radavicius, M., & Vaitkus, P. (2007). Locally weighted neural networks for an analysis of the biosensor response. Kybernetika, 43(1), 21–30.
Bergveld, P. (1970). Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Transactions On Bio-Medical Engineering, 1, 70-71.
Bousse, L., Bousse, L., De Rood, N. F., & Bergveld, P. (1983). Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface. IEEE Transactions On Electron Devices, 30(10), 1263–1270.
Choi, B., Lee, J., Yoon, J., Ahn, J.-H., Park, T. J., Kim, D. M. & Choi, S.-J. (2015). Tcad-based simulation method for the electrolyte-insulator-semiconductor field-effect transistor. IEEE Transactions On Electron Devices, 62(3), 1072–1075.
Daniel, M., Janicki, M., & Napieralski, A. (2003). Simulation of ion sensitive transistors using a spice compatible model. Proceedings of IEEE Sensors, 2(1), 543–548.
Dzyadevych, S. V., Soldatkin, A. P., El’skaya, A. V., Martelet, C., & Jaffrezic-Renault, N. (2006). Enzyme biosensors based on ion-selective field-effect transistors. Analytica Chimica Acta, 568(1–2), 248–258.
El-Grour, T., Najari, M., & El-Mir, L. (2018). A novel model for graphene-based ion-sensitive field-effect transistor. Journal of Computational Electronics, 17(1), 297–303.
Ferreira, L. S., De Souza, M. B., & Folly, R. O. M. (2001). Development of an alcohol fermentation control system based on biosensor measurements interpreted by neural networks. Sensors and Actuators, B: Chemical, 75(3), 166-171.
Iqbal, S. Z., Jinap, S., Pirouz, A. A., & Ahmad Faizal, A. R. (2015). Aflatoxin M1 in milk and dairy products, occurrence and recent challenges: A review. Trends in Food Science and Technology, 46(1), 110-119.
Jun, Z., Yu-An, T., Xue-Lan, Z., & Jun, L. (2010). An improved dynamic structure-based neural networks determination approaches to simulation optimization problems. Neural Computing and Applications, 19(6), 883–901.
Lin, C., & Chen, S. (2019). Design of highly sensitive guided-wave surface plasmon resonance biosensor with deep dip using genetic algorithm. Optics Communications, 445, 155–160.
Meena, A., Eswari, A., & Rajendr, L. (2011). Mathematical modeling of biosensors: Enzyme-substrate interaction and biomolecular interaction. In P. A. Serra (Ed.), New Perspectives in Biosensors Technology and Applications, (pp 215-228). BoD–Books on Demand.
Mirjalili, S. (2019). Genetic Algorithm. In S. Mirjalili (Ed.), Evolutionary Algorithms and Neural Networks (pp. 43–55). Springer, Cham.
Nautiyal, L., Shivach, P., & Ram, M. (2018). Optimal Designs by Means of Genetic Algorithms. In M. Ram & J. P. Davim (Eds), Soft Computing Techniques and Applications in Mechanical Engineering (pp. 151–161). IGI Global.
Pachauri, V., & Ingebrandt, S. (2016). Biologically sensitive field-effect transistors: from ISFETs to NanoFETs. In P. Estrela (Ed.), Biosensor Technologies For Detection Of Biomolecules (Vol. 60, pp. 81–90). Portland Press LTD.
Passeri, D., Morozzi, A., Kanxheri, K., & Scorzoni, A. (2015). Numerical simulation of ISFET structures for biosensing devices with TCAD tools. Biomedical Engineering Online, 14(2).
Rowe, J. E. (2015). Genetic Algorithms. In J. Kacprzyk & W. Pedrycz (Eds.). Springer Handbook of Computational Intelligence (pp. 825–844). Berlin, Heidelberg: Springer Berlin Heidelberg.
Sharma, P. K., Thakur, H. R., & Dutta, J. C. (2017). Modeling and simulation of carbon nanotube-based dual-gated enzyme field effect transistor for acetylcholine detection. Journal of Computational Electronics, 16(3), 584–592.
Sheliakina, M., Arkhypova, V., Soldatkin, O., Saiapina, O., Akata, B., & Dzyadevych, S. (2014). Urease-based ISFET biosensor for arginine determination. Talanta, 121, 18–23.
Shoorideh, K., & Chui, C. O. (2012). Optimization of the Sensitivity of FET-Based Biosensors via Biasing and Surface Charge Engineering. IEEE Transactions On Electron Devices, 59(11), 3104–3110.
Soo-Won, C., & Bathe, K. J. (1989). On automatic mesh construction and mesh refinement in finite element analysis. Computers and Structures, 32(3–4), 911–936.
Stepurska, K. V., Soldatkin, O. O., Kucherenko, I. S., Arkhypova, V. M., Dzyadevych, S. V., & Soldatkin, A. P. (2015). Feasibility of application of conductometric biosensor based on acetylcholinesterase for the inhibitory analysis of toxic compounds of different nature. Analytica Chimica Acta, 854, 161–168.
Temple-Boyer, P., Le Gal, J., Pourciel-Gouzy, M. L., Sant, W., & Martinez, A. (2006). Modelling of EnFETs for the creatinine detection. Sensors And Actuators B-Chemical, 118(1–2), 47–52.
Wang, G. G., & Shan, S. (2007). Review of metamodeling techniques in support of engineering design optimization. Journal of Mechanical Design, Transactions of the ASME, 129(4), 370–380.
Wang, L. (2005). A hybrid genetic algorithm-neural network strategy for simulation optimization. Applied Mathematics and Computation, 170(2), 1329–1343.
Zeggai, O., Belarbi, M., Ouledabbes, A., & Mouloudj, H. (2019). Modeling of a micro-biological sensor field effect for the enzymatic detection of glucose. International Journal of Modern Physics B, 33(25).