طیف‌سنجی مرئی و مادون قرمز نزدیک برای تعیین حجم آب میوه انار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش مهندسی بیوسیستم دانشکده کشاورزی دانشگاه شیراز شیراز ایران

2 بخش علوم باغبانی دانشکده کشاورزی دانشگاه شیراز شیراز ایران

چکیده

میوه انار یکی از محصولات باغی مهم در ایران است که علاوه بر ارزش بالای اقتصادی-تجاری از فواید غذایی فراوانی برخوردار است. به دلیل عدم توسعه مناسب صنعت فرآوری این محصول، کارخانه­ها از روش­های کاملاً سنتی و محدود در سنجش کیفیت انار استفاده می­کنند که باعث کاهش مرغوبیت کالای تولیدی می­شود. در این پژوهش استفاده از فناوری غیر­مخرب طیف­سنجی مرئی-مادون قرمز نزدیک برای تعیین حجم آب میوه انار که از ویژگی­های اساسی کیفیت این محصول است مورد بررسی قرار گرفت. داده­های طیفی نمونه­ها حاصل از اعمال امواج در دامنه 400 تا 2500 نانومتر علاوه بر ارزیابی در حالت ­پردازش نشده، به پنج روش تصحیح پراکندگی ضربی، متغیر نرمال استاندارد (SNV)، نرمال­سازی بردار، مشتق اول و دوم پیش­پردازش شدند و مورد ارزیابی قرار گرفتند. سپس به منظور تخمین حجم آب از رگرسیون حداقل مربعات جزئی (PLSR) استفاده شد. پیاده­سازی این فرآیند­ها در قالب الگوریتم­های یادگیری ماشین و با استفاده از نرم افزار PYTHON 3.8  صورت گرفت. برای ایجاد مدل­ها، تعداد مولفه­های اصلی مرتبط با ویژگی­های استخراج شده از امضای طیفی به تعداد 36، کمترین خطا را (61/18) حاصل نمود. نتایج نشان داد که این روش با ضریب تبیین 94 درصد، میانگین خطای مطلق 3/5 و ضریب توافق 98/0 مقدار آب میوه انار را تخمین زد. این نتیجه از ترکیب پیش­پردازش SNV با رگرسیون PLSR  در بازه 400 تا 2500 نانومتر حاصل شد. علیرغم تاثیر نوع پیش­پردازش داده­ها در تخمین میزان آب انار، طیف­سنجی مرئی-مادون قرمز نزدیک شرایط لازم برای تخمین آب انار را دارا هست.

کلیدواژه‌ها


عنوان مقاله [English]

Visible and Near-Infrared Spectroscopy for Determining Pomegranate Juice Volume

نویسندگان [English]

  • Mohammad Jamalifard 1
  • Seyed Mehdi Nassiri 1
  • Ali Mohammad Shirzadifar 1
  • Alireza Shahsavar 2
1 Department of Biosystems Engineering School of Agriculture Shiraz University Shiraz Iran
2 Department of Horticulture ُ Sciences School of Agriculture Shiraz University Shiraz Iran
چکیده [English]

 Pomegranate fruit is one of the essential garden products in Iran, which, in addition to its high economic-commercial value, has many nutritional benefits. Due to the lack of appropriate development of the industry in the processing sector for this product, factories use completely traditional and limited methods for measuring the quality of pomegranate, which reduces the quality of the processed product. In the present study, the feasibility of visible and near-infrared (Vis/NIR) spectroscopy as non-destructive technology was used to determine the pomegranate fruit juice volume, which is one of the crucial quality attributes of the product. Spectral data of the samples obtained by applying waves in the range of 400 to 2500 nm, were evaluated by five methods including multiplicative scatter correlation, standard normal variate (SNV), vector normalization, first derivative, second derivative, as well as non-processed state. Then partial least square regression (PLSR) was used to estimate the juice volume. These processes were implemented according to machine learning algorithms using PYTHON 3.8 software. Lowest modeling error (18.61) was achieved with 36 principal components of extracted features from spectral signature. The results showed that this method estimated the amount of pomegranate juice with a coefficient of determination of 94 %, mean absolute error of 5.3 and distance of 0.98. This outcome resulted from combination of SNV preprocessing with PLSR regression in the range of 400 to 2500 nm. In spite of the effect of preprocessing for juice volume estimation, Vis-NIR spectroscopy possess desired condition for estimation of pomegranate juice volume.

کلیدواژه‌ها [English]

  • Hyperspectral
  • Machine Learning
  • Non-Destructive Method
  • Pomegranate
Ahmadi, K., Ebadzadeh H. R., Hatami, F., Hosseinpour, R., & Abdeshah, H. (2020). Agricultural statistics (vol. 3). Communication and Information Technology Center, Planning and Economic Deputy, Minstry of Hihad-e-Agriculture. Retrieved from https:// www. maj.ir / Dorsapax/ user files/ Sub65/ Amarnamehj1-97-98-site.pdf on date (Sept. 2021). (in Farsi)
Arendse, E., Fawole, O. A., Magwaza, L. S., & Opara, U. L. (2016). Non-destructive characterization and volume estimation of pomegranate fruit external and internal morphological fractions using X-ray computed tomography. Journal of Food Engineering, 186, 42-49.
Arendse, E., Fawole, O. A., Magwaza, L. S., Nieuwoudt, H. H., & Opara, U. L. (2017). Development of calibration models for the evaluation of pomegranate aril quality by Fourier-transform near infrared spectroscopy combined with chemometrics. Biosystems Engineering, 159, 22-32.
Arendse, E., Fawole, O. A., Magwaza, L. S., Nieuwoudt, H., & Opara, U. L. (2018). Fourier transform near infrared diffuse reflectance spectroscopy and two spectral acquisition modes for evaluation of external and internal quality of intact pomegranate fruit. Postharvest Biology and Technology, 138, 91-98.
Baek, S., Lim, J., Lee, J. G., McCarthy, M. J., & Kim, S. M. (2020). Investigation of the Maturity Changes of Cherry Tomato Using Magnetic Resonance Imaging. Applied Sciences, 10(15), 5188.
Bashghareh, A. (2019). The effect of Pre-harvest chitosan application on quantitative and qualitative characteristics of pomegranate fruit. M.Sc. Thesis on Horticultural Sciences Engineering, Gorgan University. Gorgan, Iran. (in Farsi)
Blakey, R. J., Bower, J. P., & Bertling, I. (2009). Influence of water and ABA supply on the ripening pattern of avocado (Persea americana Mill.) fruit and the prediction of water content using Near Infrared Spectroscopy. Postharvest Biology and Technology, 53(1-2), 72-76.
Bulut, E., & Alma, Ö. G. (2010). Dimensionality Reduction Methods: PCR, PLSR, RRR and health application. Physical Sciences, 6(2), 36-47.
FAO. 2013. Standard for Pomegranate (Codex 310). Retrieved from http://www.fao.org/home/search/en/?q=standardforpomegranate (on date Sept. 2021).
Fazayeli, A., Kamgar, S., Nassiri, S. M., Fazayeli, H., & De La Guardia, M. (2019). Dielectric spectroscopy as a potential technique for prediction of kiwifruit quality indices during storage. Information Processing in Agriculture, 6(4), 479-486.
Hagen, C. L., & Sanders, S. T. (2007). Investigation of multi-species (H2O2 and H2O) sensing and thermometry in an HCCI engine by wavelength-agile absorption spectroscopy. Measurement Science and Technology, 18(7), 1992.
Khodabakhshian, R., Emadi, B., Khojastehpour, M., Golzarian, M. R., & Sazgarnia, A. (2017). Non-destructive evaluation of maturity and quality parameters of pomegranate fruit by visible/near infrared spectroscopy. International Journal of Food Properties, 20(1), 41-52.
Khodabakhshian, R., Emadi, B., Khojastehpour, M., & Golzarian, M. R. (2019). A comparative study of reflectance and transmittance modes of Vis/NIR spectroscopy used in determining internal quality attributes in pomegranate fruits. Journal of Food Measurement and Characterization, 13(4), 3130-3139.
Mohsenin, N. N. (1996). Physical properties of plant and animal materials (vol. 1). Gordon Publication. Canada.
Munera, S., Hernández, F., Aleixos, N., Cubero, S., & Blasco, J. (2019). Maturity monitoring of intact fruit and arils of pomegranate cv. ‘Mollar de Elche’using machine vision and chemometrics. Postharvest Biology and Technology, 156, 110936.
Neto, A. J. S., Lopes, D. C., Pinto, F. A., & Zolnier, S. (2017). Vis/NIR spectroscopy and chemometrics for non-destructive estimation of water and chlorophyll status in sunflower leaves. Biosystems Engineering, 155, 124-133.
Patel, M. B., Nath, A., & Mayani, J. M. (2018). A study on physical properties of pomegranate (Punica granatum L., Punicaceae) fruits. International Journal of Communication Systems, 6(5), 1460-1463.
Pelliccia, D. (2018). Partial Least Square Regression in Python. Retrieved from https://nirpyresearch.com/partial-least-squares-regression-python.
Pourdarbani, R., Sabzi, S., Kalantari, D., & Arribas, J. I. (2020). Non-destructive visible and short-wave near-infrared spectroscopic data estimation of various physicochemical properties of Fuji apple (Malus pumila) fruits at different maturation stages. Chemometrics and Intelligent Laboratory Systems, 206, 104147.
Saleem, S., Aslam, M., & Shaukat, M. R. (2021). A review and empirical comparison of univariate outlier detection methods. Pakistan Journal of Statistics, 37(4), 447-462.
Salmanizadeh, F., Nassiri, S. M., Jafari, A., & Bagheri, M. H. (2015). Volume estimation of two local pomegranate fruit (Punica granatum L.) cultivars and their components using non-destructive X-ray computed tomography technique. International Journal of Food Properties, 18(2), 439-455.
Shirzadifar, A., Bajwa, S., Mireei, S. A., Howatt, K., & Nowatzki, J. (2018). Weed species discrimination based on SIMCA analysis of plant canopy spectral data. Biosystems Engineering, 171, 143-154.
Shirzadifar, A., Bajwa, S., Nowatzki, J., & Shojaeiarani, J. (2020). Development of spectral indices for identifying glyphosate-resistant weeds. Computers and Electronics in Agriculture, 170, 105276.
Xiao, H., Feng, L., Song, D., Tu, K., Peng, J., & Pan, L. (2019). Grading and sorting of grape berries using visible-near infrared spectroscopy on the basis of multiple inner quality parameters. Sensors, 19(11), 2600.
Xu, D., Wang, Y., Meng, Y., & Zhang, Z. (2017, December). An improved data anomaly detection method based on isolation forest. 10th International Symposium on Computational Intelligence and Design (ISCID) (Vol. 2, pp. 287-291). IEEE.
Yang, L., Gao, H., Meng, L., Fu, X., Du, X., Wu, D., & Huang, L. (2020). Nondestructive measurement of pectin polysaccharides using hyperspectral imaging in mulberry fruit. Food Chemistry, 334, 127614.