اثر پیشخنک کردن با روش دمش هوای سرد بر ماندگاری شوید

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهشی، بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خوزستان، سازمان تحقیقات، آموزش

2 مربی پژوهش، بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خوزستان، سازمان تحقیقات، آموزش

3 کارشناس محقق، بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خوزستان، سازمان تحقیقات، آموزش

چکیده

مدیریت صحیح پس از برداشت یکی از مهم‌‌‌ترین مراحل در کاهش تلفات و ضایعات کشاورزی است. این پژوهش به منظور بررسی اثر یک پیش‌خنک‌کن ساده با امکانات موجود و در دسترس به خصوص برای کشاورزان مناطق گرم اجرا شد و کارایی آن در کنار سردخانه‌گذاری و بسته‌بندی برای محصول شوید ارزیابی گردید. بدین منظور یک چارچوب فلزی با ابعاد 1×1×2 متر با فوم پلی‌اتیلن پوشانده شد و یک کولر گازی مجهز به کنترل‌کننده به یک انتهای محفظه متصل گردید. شوید بدون بسته‌بندی یا پس از بسته‌بندی در کارتن دارای آستر پلاستیکی در سه شرایط متفاوت بدون پیش‌خنک کردن و نگهداری در محیط، با پیش‌خنک کردن و نگهداری در محیط و با پیش‌خنک کردن و نگهداری در سردخانه قرار گرفت. نتایج نشان داد طی 4 روز اول نگهداری، شویدی که بدون بسته‌‌‌بندی در دمای محیط نگهداری شود تلفات بیشتری (60-50 درصد) داشت اما پس از آن بسته‌‌‌بندی به دلیل تجمع رطوبت باعث افزایش ناگهانی تلفات (100 درصد) شد. چنانچه مرحله پیش‌خنک‌کردن بدون اعمال سردخانه‌گذاری رها شود، مقدار تلفات افزایش خواهد یافت. بدین‌تریب شوید پیش‌خنک شده که در یک زنجیره درست و پس از بسته‌بندی در سردخانه قرار گرفت دارای کمترین مقدار تلفات کل (03/1±95/8 درصد)، افت آب فیزیولوژیک (78/1±16/5 درصد)، pH (16/0±16/6)، a* (45/1±29/20-) و بیشترین مقدار رطوبت (76/3±60/87 درصد)، سفتی (50±764)، اسید آسکوربیک (05/0±74/2 میلی‌گرم به ازای گرم وزن خشک شوید)، پذیرش کلی (65/0±10/4)، L* (39/6±44/43) و b* (31/4±09/20) بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of forced air pre-cooling on dill shelf life

نویسندگان [English]

  • مریم Ravaghi 1
  • Azarakhsh Azizi 2
  • Leila Behbahani 3
1 Assistant Professor, Agricultural Engineering Research Department, Khuzestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran.
2 . Research Instructor, Agricultural Engineering Research Department, Khuzestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
3 Researcher, Agricultural Engineering Research Department, Khuzestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
چکیده [English]

Proper management of post-harvest systems is one of the most crucial steps in reducing agricultural losses and waste. This study was aimed to find the effect of forced air pre-cooling of dill using a window air conditioner on its shelf life. For this purpose, a metal frame with dimensions of 2×1×1 m was covered with a polyethylene foam sheet and a window air conditioner (after removing its thermostat) equipped with a controller was connected to one end of this chamber. In the next step, bunches of dill without packaging and the cardboard packaging with polyethylene liner were placed in three different conditions, including without pre-cooling and keeping at ambient temperature, with pre-cooling and keeping at ambient temperature, with pre-cooling and keeping under refrigeration. The results showed that during 4 days of storage, bunches of dill kept at ambient temperature had more total loss (50-60%) but after that, packaging caused severe loss (100%) due to moisture accumulation. If cold storage and packaging was ignored after pre-cooling, total loss would increase swiftly. For this reason pre-cooled dill with proper packaging and refrigeration showed the least amount of total loss (8.95±1.03%), physiological water loss (5.16±1.78%), pH (6.16±0.16), a*(-20.29±1.45) and the highest amount of moisture content (87.60±3.76), hardness (764±50 N), ascorbic acid (2.74±0.05 mg. g-1 of dill dry weight basis), total acceptance (4.1±0.65), L* (43.44±6.39), and b* (20.09±4.31).

کلیدواژه‌ها [English]

  • cold chain
  • loss
  • packaging
  • vegetable
  • waste

The effect of forced air pre-cooling on dill shelf life   

 

EXTENDED ABSTRACT

 

Introduction

The pre-cooling process is the first and most crucial step in temperature management. It is generally defined as the procedure of removing heat immediately after harvest and before storage or handling to decrease food loss and waste. Any delay in pre-cooling can negatively affect food security and safety, and is also considered a major economic problem for the supply chain of agricultural products. The effect of poor pre-cooling is only apparent when decay and water loss result in rejected loads during distribution, so this process is not taken seriously by farmers. A range of techniques are available to achieve the pre-cooling process for fresh produce but many of them are restricted for small scale producers because of their high cost. Many studies have been performed on the development of innovative small-scale equipment. Characteristics of crops, load volume, initial and target temperature and its cost should be considered well to select wisely. This study was aimed to find the effect of forced air pre-cooling of dill using a window air conditioner on its shelf life.

Materials and Methods

A metal frame with dimensions of 2×1×1 m was covered with a polyethylene foam sheet (as a cheap insulator) with a thickness of 1 cm. A window at the end of this chamber (to install the window air conditioner) and a door in one side for entering and exiting the product were considered. The thermostat of the window air conditioner was moved to the outside of the pre-cooling chamber. A controller equipped with 8 sensors was connected to monitor and control the temperature of this chamber. 10 Kg plastic boxes of dill were placed inside the chamber in the form of 3×2×2 boxes (length, width and height) with a distance of 10 cm. After turning on, the temperatures were recorded over time, and 1/2 and 7/8 cool time were determined. In the next step, bunches of dill without packaging and in the cardboard packaging with polyethylene liner were placed in three different conditions: without pre-cooling and keeping at ambient temperature, with pre-cooling and keeping at ambient temperature, with pre-cooling and keeping under refrigeration. Total loss (%), physiological water loss (%), hardness (N), pH, CIELAB color, ascorbic acid (mg/g) and total acceptance were measured over time.  A Factorial experiment with a basic RCBD design was used for data analysis and means comparison was done by Duncan's multiple range test in α=0.05.

Results and Discussion

The constructed pre-cooler was successfully cool down field temperature of dill bunches. 37 min and 92 min were determined as 1/2 and 7/8 cool time, respectively using cooling curve while the relative humidity was 81.95±1.66% inside this chamber. The results showed that different treatments and time had significant interaction on Total loss, physiological water loss, hardness, pH, CIELAB color (L*, a*, b*), Ascorbic acid and total acceptance. The total loss es of dill stored at ambient temperature and without packaging (with or without pre-cooling treatment) at day=2, 4 were significantly higher than others due to higher physiological water loss while after 6 days of storage, total losses of packed dill stored at ambient temperature were reached to 100% due to bacterial soft rot. After 6 days of storage pre-cooled dill with packaging and refrigeration showed the least amount of total loss (8.95±1.03%), physiological water loss (5.16±1.78%), pH (6.16±0.16), a*(-20.29±1.45) and the highest amount of moisture content (87.60±3.76), hardness (764±50 N), ascorbic acid (2.74±0.05 mg. g-1 of dill dry weight basis), total acceptance (4.1±0.65), L* (43.44±6.39) and b* (20.09±4.31).

Conclusion

According to the results obtained here, pre-cooling can alleviate negative effects of high temperatures immediately after harvest. Pre-cooling followed by packaging and refrigeration could effectively limit total loss to 20% after 10 days. If pre-cooling or packaging is not followed by refrigeration, progressive and significant losses can occurr. Further research is required to compare the effect of different packaging materials and dimensions on dill shelf life.

Alvares, V., Álvares, V. S., Finger, F. L., De, R. C., Santos, A., Da, J. R., Negreiros, S., Casali, V. W. D., & Rastilantie, M. (2005). Effect of pre-cooling on the postharvest of parsley leaves. Journal of Food, Agriculture & Environment, 5(2), 31–34. https://www.researchgate.net/publication/266504858
Álvarez-Bermejo, J. A., Giagnocavo, C., Li, M., Morales, E. C., Santos, D. P. M., & Yang, X. T. (2017). Image processing methods to evaluate tomato and zucchini damage in post-harvest stages. International Journal of Agricultural and Biological Engineering, 10(5), 126–133. https://doi.org/10.25165/j.ijabe.20171005.3087
AOAC. (2006). Ascorbic Acid in Vitamin Preparations and Juices 2,6 Dichloroindophenol Titrimetric Method. Official Method of Analysis 0f AOAC International, 1–2.
Bahreini, M., Habibi Najafi, M. B., Bassami, M. R., & Abbaszadegan, M. (2013). Incidence Levels of Enteric Pathogens and Microbial Quality of Raw Vegetables in Mashhad, Iran. Iranain Food Science and Technology Research Journal, 9(1), 31–39. https://doi.org/https://doi.org/10.22067/ifstrj.v9i1.22970
Catunesco, G. M., Tofana‚, M., Muresan, C., David, A., & Stanila, S. (2012). Sensory Evaluation of Minimally Processed Parsley (Petroselinum crispum), Dill (Anethum graveolens) and Lovage (Levisticum officinale) Stored at Refrigeration Temperatures. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture, 69(2), 205–212. https://doi.org/10.15835/buasvmcn-agr:8762
Chen, Y. M., Song, H. Y., Chen, Z. S., Zhao, R., Su, Q., Jin, P. Y., Sun, Y. S., & Wang, H. (2020). Sensitivity analysis of heat and mass transfer characteristics during forced-air cooling process of peaches on different air-inflow velocities. Food Science and Nutrition, 8(12), 6592–6602. https://doi.org/10.1002/fsn3.1951
Dehghannya, J., Ngadi, M., & Vigneault, C. (2011). Mathematical modeling of airflow and heat transfer during forced convection cooling of produce considering various package vent areas. Food Control, 22(8), 1393–1399. https://doi.org/10.1016/j.foodcont.2011.02.019
Emamifar, A. (2017). The Effect of Precooling on Microbial Stability and Some Physicochemical Properties of Two Strawberry Cultivars During Storage. Food Technology and Nutrition, 14(3), 96–114.
Fatemi-Amin, S. R., & Mortezaei, A. (2013). Strategic plan of the supply chain of food products.
Ferrante, A., Maggini, R., Serra, G., Sant’anna, S. S., Ferrante, A., Incrocci, L., Maggini, R., Serra, G., & Tognoni, F. (2004). Colour changes of fresh-cut leafy vegetables during storage. In Agriculture & Environment (Vol. 2, Issue 4). https://www.researchgate.net/publication/233852247
Gajewski, M., Katarzyna, K., & Bajer, M. (2009). The Influence of Postharvest Storage on Quality Characteristics of Fruit of Eggplant Cultivars. Not. Bot. Hort. Agrobot. Cluj, 37(2), 200–205.
Góral, D., Kluza, F., & Kozłowicz, K. (2014). Assessment of Heat Transfer and Mass Change During Fruits and Vegetables Impingement Pre-Cooling. International Journal of Food Engineering, 10(1), 183–189.
Gross, K. C., Wang, Y., & Saltveit, M. (2016). The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks. In Agricultural Research Service Agriculture Handbook Number. Agricultural Research Center, USDA. www.ars.usda.gov/is/np/
Jarman, A., Thompson, J., McGuire, E., Reid, M., Rubsam, S., Becker, K., & Mitcham, E. (2023). Postharvest technologies for small-scale farmers in low- and middle-income countries: A call to action. Postharvest Biology and Technology, 206, 1–14. Elsevier B.V. https://doi.org/10.1016/j.postharvbio.2023.112491
Karami, A., Faryabi, M., & Ahmadvand, M. (2019). Analysis of the consequences of the establishment of processing and complementary industries in the agricultural sector, case study: the central part of Jiroft city. Journal of Space Economy & Rural Developement, 8(2), 223–238.
Llorca, E., Puig, A., Hernando, I., Salvador, A., Fiszman, S. M., & Lluch, M. A. (2001). Effect of fermentation time on texture and microstructure of pickled carrots. Journal of the Science of Food and Agriculture, 81(15), 1553–1560. https://doi.org/10.1002/jsfa.975
Makule, E., Dimoso, N., & Tassou, S. A. (2022). Precooling and Cold Storage Methods for Fruits and Vegetables in Sub-Saharan Africa—A Review. Horticulturae, 8(9), 1–15. https://doi.org/10.3390/horticulturae8090776
Nabati, J., Izadi, F., Abbasi, R., & Hassani, F. (2018). Effect of different storage methods on quantity and quality of potato. Iranian Food Science and Technology Research Journal, 14(1), 195–206. https://doi.org/10.22067/ifstrj.v1396i0.57671
Nshizirungu, R., & Kitinoja, L. (2019). Tomato Postharvest Management in Rwanda.
Rizzo, V., & Muratore, G. (2009). Effects of packaging on shelf life of fresh celery. Journal of Food Engineering, 90(1), 124–128. https://doi.org/10.1016/j.jfoodeng.2008.06.011
Sari, M., Simbolon, J. B., & Tarigan, S. (2018). Shelf life prediction of eggplant by application of hydrocooling technics and various temperatures of storage. International Journal of Food Science and Nutrition, 3(2), 67–71.
Tano, K., Oulé, M. K., Doyon, G., Lencki, R. W., & Arul, J. (2007). Comparative evaluation of the effect of storage temperature fluctuation on modified atmosphere packages of selected fruit and vegetables. Postharvest Biology and Technology, 46(3), 212–221. https://doi.org/10.1016/j.postharvbio.2007.05.008
Wang, X. Y., Tan, J. C., & Wang, J. (2014). Effect of precooling temperature on physiological quality of cold stored Agaricus bisporus. International Journal of Agricultural and Biological Engineering, 7(2), 108–114. https://doi.org/10.3965/j.ijabe.20140702.013