تشخیص آلودگی قارچی در غده سیب‌زمینی با استفاده از تصویربرداری حرارتی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه ارومیه

2 دانشیار، گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه ارومیه

3 استادیار ،گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه ارومیه

4 استادیار، گروه زراعت و اصلاح نباتات پردیس کشاورزی و منابع طبیعی،دانشگاه رازی کرمانشاه

5 استادیار، گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه ایلام

چکیده

پوسیدگی خشک سیب‌زمینی یکی از خسارت‌زاترین بیماری‌های غده‌های سیب‌زمینی است که عامل اصلی آن قارچ فوزاریوم سولانی است. برای جلوگیری از توسعه بیماری  پوسیدگی خشک سیب‌زمینی و کاهش تلفات آن، باید قارچ عامل شناسایی و از بین برده شود. روش‌های معمول در تشخیص آلودگی‌ قارچی زمان‌بر، پرهزینه و مشکل هستند. در این تحقیق یک روش سریع و قابل اطمینان مبنی بر فناوری گرمانگاری فعال برای تشخیص غده‌های سالم و آلوده و هم‌چنین برای طبقه‌بندی مرحله آلودگی (آلوده یک روزه تا نه روزه) ارائه شده است. در گرمانگاری فعال دو سطح دمای گرم‌کن و چهار سطح زمان خنک شدن نمونه لحاظ شد. نتایج تجزیه واریانس و مقایسه میانگین اختلاف دمای سطح غده‌های سالم و آلوده نشان داد که دمای 90 درجه سانتی‌گراد گرم‌کن و خنک شدن 40 ثانیه نمونه‌ها بهترین تیمار برای داشتن بیشترین اختلاف بین ‌غده‌های سالم و آلوده است. برای ارزیابی طبقه بند شاخص‌های آماری نظیر دقت، صحت، حساسیت و اختصاصی بودن محاسبه شد. دقت کلی طبقه بند 67/96 % بود. نتایج تحقیق حاضر نشان داد که روش ارائه شده در این تحقیق یکی از روش‌های توانمند بینایی ماشین در تشخیص کیفیت و سلامت مواد غذایی و محصولات کشاورزی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fungal Infection in Potato Tuber Using Thermal Imaging

نویسندگان [English]

  • Saeid Farokhzad Farokhzad 1
  • asad Modarese Motlagh 2
  • parviz ahmadi moghadam 3
  • Saeid Jalali Honarmand 4
  • Kamran Khaieralipour 5
1 PhD . Candidate, Mechanical Engineering of Biosystems Department, Faculty of Agriculture, Urmia University, Iran
2 Associate Professor, Mechanical Engineering of Biosystems Department, Faculty of Agriculture, Urmia University, Iran
3 Assistant Professor, Mechanical Engineering of Biosystems Department, Faculty of Agriculture, Urmia University, Iran
4 Assistant Professor, Department of Agronomy and Plant Breeding, Campus of Agriculture and Natural Resources, Razi University, Iran
5 Assistant Professor, Mechanical Engineering of Biosystems Department, Faculty of Agriculture, Ilam University, Iran
چکیده [English]

Potato dry rot is one of the most detrimental diseases affecting on potato tubers caused by Fusarium Solani fungus. In order to prevent the expansion of potato dry rot and the losses caused by this disease, the fungi must be detected and destroyed. The common methods for detecting contaminations are time-consuming, expensive and painstaking. In this study, a fast and reliable method has been presented based on active thermography technology. This method was used to detect the healthy tubers from contaminated ones and to classify the different stages of contamination (1 to 9 day after infection). In the active thermography, two heating temperature levels and four cooling time levels were applied on the samples. The results of variance analysis and compare mean of the average temperature differences between the surfaces of the healthy and contaminated tubers indicated that 90 oC heating temperature and 40 s cooling time of the samples was the best treatment for detecting healthy and contaminated tubers. For evaluating the classifier performance, statistical indicators such as accuracy, precision, sensitivity and specificity were calculated. The total accuracy of the classifier was 96.67%.

کلیدواژه‌ها [English]

  • Fungal Infection
  • Fusarium Solani
  • thermography
  • Support vector Machine
Agrios, G. (2005). Plant Pathology (5th Ed.). California: Elsevier Academic Press.

Azadvar, M. Najafinia, M. & Ershad, J. (2006). Study on causal agents of potato tuber rot in store and cold-room of Jiroft region. Pajouhesh & Sazandegi, 75, 97-101. (In Persian).

Bauriegel, E. & Herppich, W. B. (2014). Hyperspectral and Chlorophyll Fluorescence Imaging for Early Detection of Plant Diseases, with Special Reference to Fusarium spec. Infections on Wheat. Agriculture, 4(1), 32-57.

Ben M’Barek, S. Cordewener, J. H. Tabib Ghaffary, S. M. Van Der Lee, T. A. Liu, Z. Mirzadi Gohari, A. Mehrabi,

R. America, A. H. Robert, O. Friese, T. L. Hamza, S. Stergiopoulos, I. De Wit, P. J. & Kema, G. H. (2015). PLC and liquid-chromatography mass spectrometry identify candidate necrosis-inducing proteins from culture filtrates of the fungal wheat pathogen Zymoseptoria tritici. Fungal Genetics and Biology, 79, 54–62.

Biondi, E. Blasioli, S. Galeone, A. Spinelli, F. Cellini, A. Lucchese, C. & Braschi, I. (2014). Detection of potato brown rot and ring rot by electronic nose: From laboratory to real scale. Talanta, 129, 422–430.

Bojanowskia, Avisa, T. J. Pelletier, S. & Tweddella, R. J. (2013). Management of potato dry rot. Postharvest Biology and Technology, 84, 99–109.

Chehri, K. Ghasempour, H. R. & Karimi, N. (2014).  Molecular phylogenetic and pathogenetic characterization of Fusarium solani species complex (FSSC), the cause of dry rot on potato in Iran. Microbial Pathogenesis, 67-68, 14-19.

Chelladurai, V. Jayas, D. S. & White, N. D. G. (2010). Thermal imaging for detecting fungal infection in stored wheat. Journal ofStored Products Research, 46, 174–179.

Food and Agriculture Organization. (2014). Retrieved April 9, 2017, from

Gashgari, R. M. Shebany, Y. M. & Gherbawy, Y. A. (2013). Molecular characterization of fungi associated with superficial blemishes of potato tubers in Al-Qasim region. In: The International Conference for Academic Disciplines is organized at the UNLV Student Union Building, 18-22 March., Maryland Parkway, Las Vegas, Nevada.

Gowen, A. A. Tiwari, B. K. Cullen, P. J. McDonnell, K. O’Donnell, C.P. (2010). Applications of thermal imaging in food quality and safety assessment. Trends in Food Science & Technology, 21(4), 190-200.

Heidarian, R. Javan-Nikkhah, M. Peyambari, M. & Ormaz, B. (2006). Study on fungal contamination of pistachio seeds in kerman province, Iran and some new fungi for Iranian pistachio Mycoflora. In: IV International Symposium on Pistachios and Almonds, November 2006, Teheran, Iran, pp. 615 – 617. http://kayhanarch.kayhan.ir/900723/7.htm.

Huang, H. Liu, L.& Ngadi, M. O. (2014). Recent Developments in Hyperspectral Imaging for Assessment of Food Quality and Safety. Sensors, 14(4), 7248-7276.

Hussain, T. Singh, B. P. & Anwar, A. (2014). A quantitative Real Time PCR based method for the detection of Phytophthora infestans causing Late blight of potato, in infested soil. Saudi Journal of Biological Sciences, 21, 380–386.

Hussain, T. Singh, B. P. & Anwar, A. (2015). Development of specific marker for PCR diagnostic of late blight of potato caused by Phytophthora infestans using RAPD based SCAR methodology. Journal of the Saudi Society of Agricultural Sciences, Available online 9 October 2015, from http://www.sciencedirect.com/science/article/pii/S0166093415002414.

Jeevalatha, A. Kaundal, P. Venkatasalam, E. P. Chakrabarti, S. K. & Singh, B. P. (2013). Uniplex and duplex PCR detection of geminivirus associated with potato apicalleaf curl disease in India, Journal of Virological Methods, 193(1), 62–67.

Kheiralipour, K. (2012). Implementation and construction of a system for detecting fungal infection in pistachio kernel based on thermal imaging (TI) and image processing technology, Ph. D. dissertation, University of Tehran, Karaj.

Kheiralipour, K. Ahmadi, H. Rajabipour, A. Rafiee, S. & Javan-Nikkhah, M. (2015). Classifying Healthy and Fungal Infected-Pistachio Kernel by Thermal Imaging Technology. International Journal of Food Properties. 18, 93–99.

Kheiralipour, K. Ahmadi, H. Rajabipour, A. Rafiee, S. & Javan-Nikkhah, M. (2012). Investigation of total emissivity of pistachio kernel using thermal imaging technique. Journal of Agricultural Technology, 8(2), 435-441.

Kheiralipour, K. Ahmadi, H. Rajabipour, A. Rafiee, S. Javan-Nikkhah, M. Jayas, D. S. & Siliveru. K. (2016). Detection of fungal infection in pistachio kernel by long-wave near-infrared hyperspectral imaging technique.  Quality Assurance and Safety of Crops and Foods, 8(1), 129-135.

Lee, S. & Rho, J. Y. (2015).  Development of a PCR Diagnostic System for Detecting Andean Potato Mottle Virus Associated with Potato Quarantine in Korea. American Journal of Potato Research, 92(4), 546-550.

Lee, Y. S. (2001). New sensitive detection method for Phytophthora infestans in potato. In: proceedind of the international workshop on potato late blight, solving a threat to global food security, 15-19 October 2001, session III, pp. 66-83.

Lopez, L. Echeverria, G. Usall, J. & Teixido, N. (2015). The detection of fungal diseases in the Golden Smoothee apple and Blanquilla pear based on the volatile profile. Postharvest Biology and Technology, 99, 120-130.

Lui, L. Vikram, A. Hamzehzarghani, H. Kushalappa, A. C. (2005). Discrimination of three fungal diseases of potato tubers based on volatile metabolic profiles developed using GC/MS. Potato Research, 48, 85-96.

Malachova, A. Sulyoka, M. Beltrán, E. Berthiller, F. & Krska, R. (2014). Optimization and validation of a quantitative liquid chromatography–tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins infour model food matrices. Journal of Chromatography A, 1362, 145–156.

Manickavasagan, A. Jayas D. S. White N. D. G. & Paliwal, J. (2005). Applications of thermal imaging in agriculture-A review. In: Canadian Society for Engineering in Agricultultural, Food and Biological Systems. 26 - 29 June, Manitoba University, Winnipeg, Canada, pp.1-11.

Merlington, A. A. (2014). Management options for control of fusarium dry rot (fusarium spp) and potato common scab (streptomyces  spp) of potato (solanum tuberosum l) in Michigan, M. Sc. dissertation, Michigan State University, Michigan.

 Moosavian, A. (2012). Fault Diagnosis and Classification of Journal Bearings by Using Support Vector Machine, M. Sc. dissertation, University of Tehran, Karaj.

Pan, L. Zhang, W. Zhu, N. Mao, S. &Tu, K. (2014). Early detection and classification of pathogenic fungal disease in post-harvest strawberry fruit by electronic nose and gas chromatography–mass spectrometry. Food Research International, 62, 162–168.

Pujari, D. J. Yakkundimath, R. & Byadgi, A. S. (2015). Image processing based detection of fungal disease in plants. Procedia Computer Science, 46, 1802-1808.

Ramalingam, G. Neethirajan, S. Jayas, D. S. & White, N. D. G. (2011). Characterization of the influence of moisture content on single wheat kernels using machine vision. Applied Engineering in Agriculture, 27(3), 403-409.

Ravikanth, L. Singh,C. B. Jayas, D. S. & White, N. D. G. (2016). Performance evaluation of a model for the classification of contaminants from wheat using near-infrared hyperspectral imaging. Biosystems Engineering, 147, 248-258.

Ray, S. S. Jain, N. Arora, R. K. Chavan, S. & Panigrahy, S. (2011). Utility of Hyperspectral Data for Potato Late Blight Disease Detection. Journal of Indian socitey of Remoe Sensing, 39(2), 161-169.

 Rutolo, M. Covington, J. A. Clarkson, J. & Iliescu, D. (2014). Detection of Potato Storage Disease via Gas Analysis: A Pilot Study Using Field Asymmetric Ion Mobility Spectrometry. Sensors, 14(9), 15939-15952.

Schisler, D. A. Slininger, P. J. & Olsen, N. L. (2016). Appraisal of selected osmoprotectants and carriers for formulating Gram-negative biocontrol agents active against Fusarium dry rot on potatoes in storage. Biological Control, 98, 1–10.

Sezavar, A. R. (2011 October). Hunger, Permanent Great threaten. Retrieved July 7, 2016, Keyhan Newspaper, No. 20048,  pp. 7.

 Sharifi, K. Zaree, R. Zamani Zadeh, H. R. & Arjmandian, A. (2009). Fusarium species causing dry rot of potatoes in Ardabil, Tehran and Hamedan Provinces. Entomology and Phytopathology, 76(2), 93-113. (In Persian).

Shen, L. Chen, H. Yu, Z. Kang, W. Zhang, B. Li, H. Yang, B. & Liu, D. (2016). Evolving support vector machines using fruit fly optimization for medical data classification. Knowledge-Based Systems, 96, 61–75.

Taheri-Garavand, A. Omid, M. Ahmadi, H. Mohtasebi, S. S. & Carlomagno, G. M. (2017). Intelligent fault diagnosis of cooling radiator based on thermal image processing and artificial intelligence techniques. Modares Mechanical Engineering, 17(2), 240-250. (In Persian).

Thybo, A. K. Jespersen, N. S. Larke, P. E. Stbdkilde-Jbrgensen, H. J. (2004). Nondestructive detection of internal bruise and spraing disease symptoms in potatoes using magnetic resonance imaging. Magnetic Resonance Imaging, 22(9), 1311-1317.

Wang, Y. Zia, S. Owusu-Adu, S. Gerhards, R. & Müller, J. (2014). Early Detection of Fungal Diseases in Winter Wheat by Multi-Optical Sensors. APCBEE Procedia, 8, 199 – 203.

Wharton, P. Hammerschmidt, R. & Krik, W. (2007). Fusarium dry rot. Retrieved July 7, 2016, the Michigan Agricultural Experiment Station and the Michigan Potato Industry Commission, from http://www.potatodiseases.org/pdf/fusarium-dry-rot-bulletin.pdf

Wharton, P. S. & Kirk, W. W. (2014). Evaluation of biological seed treatments in combination with management practices for the control of Fusarium dry rot of potato. Biological Control, 73, 23–30.

Yorulmaz, O. Pearson, T. & Enisetin, C. A. (2012). Detection of fungal damaged popcorn using image property covariance features. Computers and Electronics in Agriculture, 84, 47–52.

Zhang, H. Paliwal, J. Jayas, D. S. & White, N. D. G. (2007). Classification of fungal infected wheat kernels using nearinfrared reflectance hyperspectral imaging and support vector machine. Transactions of the ASABE, 50(5), 1779-1785.