مطالعه و شبیه‌سازی سینتیک خشک‌شدن ورقه‌های خرما در یک خشک‌کن ترکیبی الکتروهیدرودینامیک- جریان همرفت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دکتری، گروه مهندسی ماشینهای کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

2 استاد، گروه مهندسی ماشینهای کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

3 دانشیار، گروه مهندسی ماشینهای کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

4 دانشیار، گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران

چکیده

خشک‌کردن به شیوه الکتروهیدرودینامیک یک روش غیرحرارتی است که با فراهم آوردن امکان خشک‌شدن محصول در دمای محیط، امکان افزایش خواص کیفی محصول خشک‌شده را فراهم می‌آورد. با توجه به اهمیت به‌کارگیری روش‌های پیشرفته در خشک‌کردن خرما، در این تحقیق یک خشک‌کن الکتروهیدرودینامیک-جریان همرفت با قابلیت کنترل دما توسعه داده شد و فرآیند رطوبت‌گیری ورقه‌های نازک خرمای شاهانی در روش‌های خشک‌کردن الکتروهیدرودینامیک، هوای گرم و ترکیبی بر اساس تغییرات نسبت رطوبت در طول زمان خشک‌شدن مدل‌سازی شد. نتایج تحقیق نشان داد با افزایش سرعت هوا در دماهای 25 و 35 درجه سلسیوس از روش الکتروهیدرودینامیک، زمان خشک‌شدن محصول افزایش می‌یابد. این در حالی است که با افزایش سرعت هوا، زمان خشک‌شدن در هر دو روش ترکیبی و هوای گرم کاهش می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Study and Simulation Drying Kinetics of Date Fruit Slices in a Hybrid Electrohydrodynamic-Convective Dryer

نویسندگان [English]

  • Mahdi Keramat-Jahromi 1
  • Seyed Saeid Mohtasebi 2
  • Hossein Musazade 3
  • Mahdi Ghasemi-Varnamkhasti 4
  • Amin Nasiri 1
1 Ph.D. Graduated, Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2 Professor, Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3 Associate Professor, Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
4 Associate Professor, Mechanical Engineering of Biosystem Department, Faculty of Agriculture, University of Shahrekord, Shahrekord, Iran
چکیده [English]

Electrohydrodynamic drying as a non-thermal method of drying increases the quality of dried products at ambient temperature. Considering the importance of using advanced methods in date fruit drying, in this study, an electrohydrodynamic-convective dryer equipped with temperature control system was developed to model the drying process of date fruit (cv. Shahani) slices based on changes in moisture ratio per drying time in electrohydrodynamic (EHD), hot air (HA) and the hybrid (EHD-HA) drying methods. Results showed as the air velocity increased, the drying time in 25 and 35 °C of EHD drying increased while increasing in air velocity, decrease the drying time in both HA and EHD-HA drying methods.

کلیدواژه‌ها [English]

  • Date Fruit Chips
  • Dehydration
  • Electro-hydrodynamic
  • Convection
  • Non-thermal
Aghbashlo, M., Kianmehr, M., & Samimi-Akhijahani, H. (2009). Evaluation of thin-layer drying models for describing drying kinetic of barberries (barberries vulgaris L.). Journal of Food Process Engineering, 32(2), 278-293.
Ahmedou, S.A.O. Rouaud, O., & Havet, M. (2009). Assessment of the electrohydrodynamic drying process. Food Bioprocess Technology, 2, 240-247.
Akpinar, E. K., Bicer, Y., & Yildiz, C. (2003). Thin layer drying of red pepper. Journal of Food Engineering, 59 (1), 99-104.
Akpinar, E. K., & Bicer, Y. (2008). Mathematical modelling of thin layer drying process of long green pepper in solar dryer and under open sun. Energy Conversion and Management, 49(6), 1367-1375.
Al-Shahib, W., & Marshall, R. J. (2003). The fruit of the date palm: its possible use as the best food for the future?. International journal of food sciences and nutrition, 54(4), 247-259.
Bai, Y., Li, X., Sun, Y., & Shi, H. (2011). Thin layer electrohydrodynamic (EHD) drying and mathematical modeling of fish. International Journal of Applied Electromagnetics and Mechanics, 36(3), 217-228.
Bai, Y. X., Yang, G. J., Hu, Y. C., & Qu, M. (2012). Physical and Sensory Properties of Electrohydrodynamic (EHD) Dried Scallop Muscle. Journal of Aquatic Food Product Technology, 21(3), 238-247.
Bai, Y., Qu, M., Luan, Z., Li, X., & Yang, Y. )2013(. Electrohydrodynamic drying of sea cucumber (Stichopus japonicus). LWT - Food Science and Technology. 54(2), 570-576.
Bajgai T. R., Raghavan, G. S. V., Hashinaga, F., & Ngadi, M. O. (2006). Electrohydrodynamic Drying- A Concise Overview, Drying Technology: An International Journal, 24(7), 905-910.
Barreveld, W. H. (1993). Date palm products. FAO.
Butrymowicz, D., Trela, M., & Karwacki, J. (2002). Enhancement of condensation heat transfer by means of EHD condensate drainage. International journal of thermal sciences, 41(7), 646-657.
Dinani, S. T., Hamdami, N., Shahedi, M., & Havet, M. (2014). Mathematical modeling of hot air/electrohydrodynamic (EHD) drying kinetics of mushroom slices. Energy Conversion and Management, 86, 70-80.
Dinani, S. T., Hamdami, N., Shahedi, M., & Havet, M. (2015). Quality assessment of mushroom slices dried by hot air combined with an electrohydrodynamic (EHD) drying system. Food and Bioproducts Processing, 94, 572-580.
Ding, C., Lu, J., & Song, Z. (2015). Electrohydrodynamic Drying of Carrot Slices. PLoS ONE, 10(4): e0124077. doi:10.1371/journal.pone.0124077
Doymaz, I. (2012). Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L.). Energy conversion and management, 56, 199-205.
Elmizadeh, A., Shahedi, M., & Hamdami, N. (2017). Comparison of electrohydrodynamic and hot-air drying of the quince slices. Innovative Food Science & Emerging Technologies, 43, 130-135.
Erbay, Z., & Icier, F. (2010). A Review of thin layer drying of foods: theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition, 50 (5), 441-464.
Esehaghbeygi, A., Pirnazari, K., & Sadeghi, M. (2014). Quality assessment of electrohydrodynamic and microwave dehydrated banana slices. LWT-Food Science and Technology, 55(2), 565-571.
Falade, K. O., & Abbo, E. S. (2007). Air-drying and rehydration characteristics of date palm (Phoenix dactylifera L.) fruits. Journal of Food Engineering, 79(2), 724-730.
Glasner, B., & Botes, A. (2002). Date harvesting, packinghouse management and marketing aspects. In: Zaid A, editor, Date Palm Cultivation. FAO Plant Production and Protection Paper‐156. FAO, Rome. pp 237–67.
Izli, G. (2017). Total phenolics, antioxidant capacity, colour and drying characteristics of date fruit dried with different methods. Food Science and Technology, 37(1), 139-147.
Kaleta, A., & Górnicki, K. (2010). Some remarks on evaluation of drying models of red beet particles. Energy Conversion and Management, 51(12), 2967-2978.
Karathanos, V. T. (1999). Determination of water content of dried fruits by drying kinetics. Journal of Food Engineering, 39(4), 337-344.
Keramat-Jahromi, M., Jafari, A., Rafiee, S., Keyhani, A. R., Mirasheh, R., & Mohtasebi. S. S. (2007). Some Physical properties of Date Fruit (cv. Lasht). Agricultural Engineering International: the CIGR Ejournal. Manuscript FP 07 019. Vol. IX.
Keramat-Jahromi, M., Jafari, A., Rafiee, S., Mirasheh,  R., & Mohtasebi, S. S. )2008(. Changes in Physical Properties of Date Fruit (cv. Shahani) during Three Edible Stages of Ripening. American-Eurasian Journal of Agricultural & Environmental Sci. 3(1), 132-136
Lahsasni, S., Kouhila, M., Mahrouz, M., Mohamed, L., & Agorram, B. (2004). Characteristic drying curve and mathematical modeling of thin‐layer solar drying of prickly pear cladode (opuntia ficus indica). Journal of food process engineering, 27(2), 103-117.
Lai, F. C., & Sharma, R. K. (2005). EHD-enhanced drying with multiple needle electrode. Journal of Electrostatics, 63(3-4), 223-237.
Liu, W., Zheng, Y., Huang, L., Zhang, C., & Xie, P. (2011). Low-temperature vacuum drying of natural gardenia yellow pigment. Drying Technology, 29(10), 1132-1139.
Liu, X., Qiu, Z., Wang, L., Cheng, Y., Qu, H., & Chen, Y. (2009). Mathematical modeling for thin layer vacuum belt drying of Panax notoginseng extract. Energy Conversion and Management, 50(4), 928-932.
Ma, Q., & Chen, Z. Q. (2017). Numerical study on the effect of EHD flow on mass transfer of gas mixtures. International Journal of Numerical Methods for Heat & Fluid Flow, 27(10), 2268-2288.
Martynenko, A., & Zheng, W. (2016). Electrohydrodynamic drying of apple slices: Energy and quality aspects. Journal of Food Engineering, 168, 215–222.
Martynenko, A., & Kudra, T. (2016). Electrically-induced transport phenomena in EHD drying - A review. Trends in Food Science & Technology, 54, 63-73.
Martynenko, A., Astatkie, T., Riaud, N., Wells, P., & Kudra, T. (2017). Driving forces for mass transfer in electrohydrodynamic (EHD) drying. Innovative Food Science & Emerging Technologies, 43, 18-25.
Meisami-asl E, Rafiee S, Keyhani A., & Tabatabaeefar A. (2009). Mathematical modeling of moisture content of apple slices (var. Golab) during drying. Pakistan Journal of Nutrition, 8(6), 804-809.
Miranda, M., Maureira, H., Rodriguez, K., & Vega-Gálvez, A. (2009). Influence of temperature on the drying kinetics, physicochemical properties, and antioxidant capacity of Aloe Vera (Aloe Barbadensis Miller) gel. Journal of Food Engineering, 91(2), 297-304.
Mortazavi, M. H., Arzani, K., & Orujalian, R. )2007(. Modified atmosphere packaging of date fruit (Phoenix dactylifera L.) cultivar Barhee in Khalal stage. The Fourth International Date Palm Conference. pp: 1064–1069.
Pirnazari, K., Esehaghbeygi, A., & Sadeghi, M. (2014). Assessment of Quality Attributes of Banana Slices Dried by Different Drying Methods. International Journal of Food Engineering, 10(2), 251-260. doi:10.1515/ijfe-2013-0059
Pirnazari, K., Esehaghbeygi, A., & Sadeghi, M. (2016). Modeling the Electrohydrodynamic (EHD) Drying of Banana Slices. International Journal of Food Engineering, 12(1), 17-26. doi:10.1515/ijfe-2015-0005
Shahdadi, F., Mirzaei, H. O., & Garmakhany, A. D. (2015). Study of phenolic compound and antioxidant activity of date fruit as a function of ripening stages and drying process. Journal of Food Science and Technology-Mysore, 52(3), 1814-1819.
Shahdadi, F., Mirzaei, H. O., Garmakhany, A. D., Mirzaei, H., & Khosroshahi, A. G. (2013). Effect of drying process on antioxidant properties of date palm fruits. Minerva Biotecnologica, 25(4), 235-243.
Shahhoseini, R., Ghorbani, H., Karimi, S. R., Estaji, A., & Moghaddam, M. (2013). Qualitative and quantitative changes in the essential oil of lemon verbena (Lippia citriodora) as affected by drying condition. Drying technology, 31(9), 1020-1028.
Shi, C. A., Martynenko, A., Kudra, T., Wells, P., Adamiak, K., & Castle, G. S. P. (2017). Electrically-induced mass transport in a multiple pin-plate electrohydrodynamic (EHD) dryer. Journal of Food Engineering, 211, 39-49.
Siddiq, M, Aleid, S. M., & Kader, A. A. (2014). Dates: Postharvest Science, Processing Technology and Health Benefits. Wiley-Blackwell.
Togrul, I. T., & Pehlivan, D. (2004). Modelling of thin-layer drying kinetics of some fruits under open-air sun drying process. Journal of Food Engineering, 65(3), 413-425.
Yaldiz, O., Ertekin, C., & Uzun, H. I. (2001). Mathematical modeling of thin layer solar drying of sultana grapes. Energy, 26(5), 457-465.
Yang, C. S. T., & Atallah, W. A. (1985). Effect of four drying methods on the quality of intermediate moisture lowbush blueberries. Journal of Food Science, 50(5), 1233-1237.