بررسی تأثیر میدان‌های مغناطیسی استاتیک و دینامیک بر برخی ویژگی‌های شیمیایی حبه‌ی انار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

2 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشکاه بوعلی سینا، همدان، ایران

3 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

        تاکنون تحقیقی در زمینه بررسی اثر میدان مغناطیسی بر ویژگی­های محصولات کشاورزی در مرحله پس­از­برداشت دیده نشده است. در این پژوهش، یک دستگاه مغناطیس با قابلیت ایجاد میدان­های استاتیک و دینامیک ساخته شد و سپس تأثیر آن با چگالی شار مغناطیسی 2784 و 8240 گاوس در زمان مغناطیسی­شدن یک و 12 ساعت بر درصد مواد جامد در محلول، pH، ظرفیت آنتی­اکسیدان کل و ترکیبات فنولی کل حبه­های انار بررسی شد. در بین شاخص­های شیمیایی، تأثیر میدان مغناطیسی بر ظرفیت آنتی­اکسیدان کل حبه­های انار معنی­دار بود. به طوری که میدان مغناطیسی دینامیک با شدت 8240 گاوس در زمان مغناطیسی­شدن یک ساعت، سبب افزایش ظرفیت آنتی­اکسیدان کل حبه­های انار به میزان 32/13% شد. در صورتی که در زمان مغناطیسی­شدن 12 ساعت، سبب کاهش آن به میزان 08/11% گردید. با در نظرگرفتن نتایج، تأثیر میدان مغناطیسی دینامیک از میدان مغناطیسی استاتیک و تأثیر چگالی شار مغناطیسی 8240 گاوس از 2784 گاوس بیشتر بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Static and Dynamic Magnetic Fields on Some Chemical Properties of Pomegranate Arils

نویسندگان [English]

  • Behnam Alaei 1
  • Reza Amiri Chayjan 2
  • Hassan Sarikhani 3
1 Department of Biosystems Engineering, Faculty of Agriculture, University of Bu Ali University, Hamedan, Iran.
2 Department of Biosystems Engineering, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran
3 Department of Horticultural Sciences, Faculty of Agriculture, Bu Ali Sina University, Hamedan, Iran
چکیده [English]

        No study has been reported about magnetic fields effects on properties of agricultural products in the postharvest stage. In this research a static and dynamic magnetic fields apparatus was fabricated and then the field effects with magnetic flux densities of 2784 and 8240 G and magnetic time of 1 and 12 h on total soluble solids, pH, total antioxidant capacity and total phenolic compounds of pomegranate arils were investigated. Between chemical indicators, the effect of magnetic field on the total antioxidant capacity of pomegranate arils was significant. Dynamic magnetic field with flux density of 8240 G and time of 1 h caused %13/32 increase in antioxidant capacity. But magnetic time of 12 h caused %11/08 decrease in antioxidant capacity. Finally the effect of dynamic magnetic field was more than static magnetic field and magnetic flux density of 8240 G was more than 2784 G.

کلیدواژه‌ها [English]

  • magnetic field
  • Pomegranate aril
  • Total antioxidant capacity
  • Total phenolic compounds
AOAC. 2002. Official Methods of Analysis. Method Number 934.06, Association of Official Analytical Chemists, Arlington,VA.
Amiri, M. C. (2006). Efficient separation of bitumen in oil sand extraction by using magnetic treated process water. Separation and Purification Technology47(3), 126-134.
          Alkaya, D. B., Seyhan, S. A., & Ozturk, B. N. (2019). Influence of extraction method on antioxidant properties of Rheum ribes root extract. Ovidius University Annals of Chemistry30(1), 44-47.
Baghel, L., Kataria, S., & Guruprasad, K. N. (2016). Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bioelectromagnetics37(7), 455-470.                        
Bhardwaj, J., Anand, A., Pandita, V. K., & Nagarajan, S. (2016). Pulsed magnetic field improves seed quality of aged green pea seeds by homeostasis of free radical content. Journal of Food Science and Technology53(11), 3969-3977.
Cai, R., Yang, H., He, J., & Zhu, W. (2009). The effects of magnetic fields on water molecular hydrogen bonds. Journal of Molecular Structure938(1-3), 15-19.
Cristofori, V., Caruso, D., Latini, G., Dell’Agli, M., Cammilli, C., Rugini, E., ... & Muleo, R. (2011). Fruit quality of Italian pomegranate (Punica granatum L.) autochthonous varieties. European Food Research and Technology232(3), 397-403.
Escobedo-Avellaneda, Z., Gutiérrez-Uribe, J., Valdez-Fragoso, A., Torres, J.A. and Welti-Chanes, J., 2014. Phytochemicals and antioxidant activity of juice, flavedo, albedo and comminuted orange. Journal of Functional Foods, 6, pp.470-481.
Esmaeilnezhad, E., Choi, H. J., Schaffie, M., Gholizadeh, M., & Ranjbar, M. (2017). Characteristics and applications of magnetized water as a green technology. Journal of Cleaner Production161, 908-921.
Flórez, M., Carbonell, M. V., & Martínez, E. (2007). Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environmental and Experimental Botany59(1), 68-75.
Grewal, H. S., & Maheshwari, B. L. (2011). Magnetic treatment of irrigation water and snow pea and chickpea seeds enhances early growth and nutrient contents of seedlings. Bioelectromagnetics32(1), 58-65.
Guo, Y. Z., Yin, D. C., Cao, H. L., Shi, J. Y., Zhang, C. Y., Liu, Y. M., ... & Qian, A. R. (2012). Evaporation rate of water as a function of a magnetic field and field gradient. International Journal of Molecular Sciences13(12), 16916-16928.
Ghodbane, S., Lahbib, A., Sakly, M., & Abdelmelek, H. (2013). Bioeffects of static magnetic fields: oxidative stress, genotoxic effects, and cancer studies. BioMed Research International2013.
Grémiaux, A., Girard, S., Guérin, V., Lothier, J., Baluška, F., Davies, E., ... & Vian, A. (2016). Low-amplitude, high-frequency electromagnetic field exposure causes delayed and reduced growth in Rosa hybrida. Journal of Plant Physiology190, 44-53.
Holysz, L., Szczes, A., & Chibowski, E. (2007). Effects of a static magnetic field on water and electrolyte solutions. Journal of Colloid and Interface Science316(2), 996-1002.
Hozayn, M., & Qados, A. A. (2010). Magnetic water application for improving wheat (Triticum aestivum L.) crop production. Agriculture and Biology Journal of North America1(4), 677-682.
Iqbal, M., ul Haq, Z., Malik, A., Ayoub, C. M., Jamil, Y., & Nisar, J. (2016). Pre-sowing seed magnetic field stimulation: a good option to enhance bitter gourd germination, seedling growth and yield characteristics. Biocatalysis and Agricultural Biotechnology5, 30-37.
Jamalizadeh, M., Etebarian, H. R., Aminian, H., & Alizadeh, A. (2011). A review of mechanisms of action of biological control organisms against post‐harvest fruit spoilage. EPPO Bulletin41(1), 65-71.
Krems, R. V. (2004). Breaking van der Waals molecules with magnetic fields. Physical Review Letters93(1), 013201.
Kataria, S., Baghel, L., & Guruprasad, K. N. (2017). Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatalysis and agricultural biotechnology10, 83-90.
Krishnaraj, C., Yun, S. I., & VK, A. K. (2017). Effect of Magnetized Water (Biotron) on Seed Germination of Amaranthaceae Family. Journal of Academia and Industrial Research (JAIR)5(10), 152.
Rashid, F. L., Hassan, N. M., Mashot, J. A., & Hashim, A. (2013). Increasing water evaporation rate by magnetic field. International Science and Investigation Journal2(3), 61-68.
Melgarejo, P., Salazar, D. M., & Artes, F. (2000). Organic acids and sugars composition of harvested pomegranate fruits. European Food Research and Technology211(3), 185-190.
Montero, P., Giménez, B., Pérez-Mateos, M., & Gómez-Guillén, M. (2005). Oxidation stability of muscle with quercetin and rosemary during thermal and high-pressure gelation. Food Chemistry93(1), 17-23.
Maheshwari, B. L., & Grewal, H. S. (2009). Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. Agricultural water Management96(8), 1229-1236.
Niu, X., Du, K., & Xiao, F. (2011). Experimental study on the effect of magnetic field on the heat conductivity and viscosity of ammonia–water. Energy and Buildings43(5), 1164-1168.
Pour, A. N., Karimi, J., Taghipoor, S., Gholizadeh, M., & Hashemian, M. (2017). Fischer–Tropsch synthesis over CNT-supported cobalt catalyst: effect of magnetic field. Journal of the Iranian Chemical Society14(7), 1477-1488.
Parsons, S. A., Judd, S. J., Stephenson, T., Udol, S., & Wang, B. L. (1997). Magnetically augmented water treatment. Process safety and Environmental Protection75(2), 98-104.
Radhakrishnan, R., & Kumari, B. D. R. (2012). Pulsed magnetic field: a contemporary approach offers to enhance plant growth and yield of soybean. Plant Physiology and Biochemistry51, 139-144.
Santacatalina, J.V., Fissore, D., Cárcel, J.A., Mulet, A. and García-Pérez, J.V., 2015. Model-based investigation into atmospheric freeze drying assisted by power ultrasound. Journal of Food Engineering, 151, pp.7-15.
Sirmatel, Ö., Sert, C., Sirmatel, F., Selek, S., & Yokus, B. (2007). Total antioxidant capacity, total oxidant status and oxidative stress index in the men exposed to 1.5 T static magnetic field. General Physiology and Biophysics26(2), 86.
Szcześ, A., Chibowski, E., Hołysz, L., & Rafalski, P. (2011). Effects of static magnetic field on water at kinetic condition. Chemical Engineering and Processing: Process Intensification50(1), 124-127.
Sudsiri, C. J., Nattawat, A., Kongchana, P. B., & Ritchie, R. J. (2016). Effect of magnetically treated water on germination and seedling growth of oil palm (Elaeis guineensis). Seed Science and Technology44(2), 267-280.
Sudsiri, C. J., Jumpa, N., Kongchana, P., & Ritchie, R. J. (2017). Stimulation of oil palm (Elaeis guineensis) seed germination by exposure to electromagnetic fields. Scientia Horticulturae220, 66-77.
Toledo, E. J., Ramalho, T. C., & Magriotis, Z. M. (2008). Influence of magnetic field on physical–chemical properties of the liquid water: Insights from experimental and theoretical models. Journal of Molecular Structure888(1-3), 409-415.
Tipole, P., Karthikeyan, A., Bhojwani, V., Deshmukh, S., Tipole, B., Shinde, K., & Vikhe, A. (2018). Performance analysis of vapour compression water chiller with magnetic flux at the condenser exit. Energy and Buildings158, 282-289.
Valipour, M. (2012). Effect of Gibberellic Acid on Growth and Rigidity of Pomegranate Cultivar of Malass Yazdi. MSc Thesis of Horticultural Sciences, Agricultural Faculty, Bu Ali Sina University, Hamedan, Iran. (In Farsi)
Vashisth, A., & Nagarajan, S. (2010). Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology167(2), 149-156.
Vashisth, A., & Joshi, D. K. (2017). Growth characteristics of maize seeds exposed to magnetic field. Bioelectromagnetics38(2), 151-157.
Wang, H. Y., Zeng, X. B., Guo, S. Y., & Li, Z. T. (2008). Effects of magnetic field on the antioxidant defense system of recirculation-cultured Chlorella vulgaris. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 29(1), 39-46.
Pang, X. F., & Deng, B. (2008). The changes of macroscopic features and microscopic structures of water under influence of magnetic field. Physica B: Condensed Matter403(19-20), 3571-3577.
Zhong, C., & Wakayama, N. I. (2001). Effect of a high magnetic field on the viscosity of an aqueous solution of protein. Journal of Crystal Growth226(2-3), 327-332.