بهینه سازی استخراج به کمک امواج مایکروویو پکتین از پوست کمبزه و بررسی خصوصیات فیزیکوشیمیایی آن

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و مهندسی صنایع غذایی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج 77871-31587، ایران

چکیده

در این مطالعه، استخراج پکتین از پوست کمبزه به عنوان ضایعات غذایی به کمک امواج مایکروویو بهینه سازی شد. بدین منظور، از طرح باکس-بنکن با سه متغیر مستقل توان مایکروویو، زمان پرتودهی و pH در سه سطح برای رسیدن به حداکثر راندمان تولید استفاده شد. نتایج نشان داد که حداکثر راندمان تولید (3/0 ± 4/19 درصد) در توان 600 وات، زمان 3 دقیقه و pH برابر با 5/1 بدست آمد. در ادامه، خصوصیات فیزیکوشیمیایی پکتین استخراج شده در شرایط بهینه مورد بررسی قرار گرفت. یافته­ها نشان داد که پکتین استخراج شده در شرایط مذکور دارای درجه استریفیکاسیون حدود 92/51 درصد، محتوای گالاکتورونیک اسید حدود 44/65 درصد و فعالیت امولسیفایری حدود 33/63 درصد بود. همچنین بررسی طیف FTIR حضور ساختار شیمیایی پکتین را تایید کرد. با توجه به نتایج بدست آمده می توان بیان داشت که پکتین پوست کمبزه را می توان در محصولات غذایی غیر رژیمی مورد استفاده قرار داد.

کلیدواژه‌ها


عنوان مقاله [English]

Microwave-Assisted Extraction Optimization of Pectin from Cucumis melo Peel and Its Physicochemical Properties

نویسندگان [English]

  • Mehdi Rezaei
  • Faramarz Khodaiyan
  • Seyed Saeid Hosseini
  • Milad Kazemi
Department of Food Science and Engineering, Faculty of Agricultural Engineering & Technology, University of Tehran, Karaj 31587-77871, Iran
چکیده [English]

In this study, microwave-assisted extraction of pectin from Cucumis melo peel as food waste was optimized. For this purpose, Box-Behnken design with three independent variables of microwave power, irradiation time and pH at three levels was used to achieve the maximum extraction yield. The results showed that the maximum extraction yield (19.4 ± 0.3%) was obtained at power of 600 W, time of 3 min and pH of 1.5. In the next step, the physicochemical properties of the pectin extracted under optimum conditions were investigated. The finding indicated that the pectin extracted under mentioned conditions had DE of ~ 51.92%, the galacturonic acid content of ~ 65.44% and the emulsifier activity of ~ 63.33%. In addition, FTIR analysis confirmed the presence of chemical structure of pectin in the obtained supernatant.

کلیدواژه‌ها [English]

  • Pectin
  • Cucumis melo
  • Optimization
  • Galacturonic acid
  • Emulsifying properties
Bagherian, H., Ashtiani, F. Z., Fouladitajar, A. & Mohtashamy, M. (2011). Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit. Chemical Engineering and Processing: Process Intensification, 50(11), 1237–1243.
Bayar, N., Kriaa, M. & Kammoun, R. (2016). Extraction and characterization of three polysaccharides extracted from Opuntia ficus indica cladodes. International journal of biological macromolecules, 92, 441-450.
Chaharbaghi, E., Khodaiyan, F. & Hosseini, S. S. (2017). Optimization of pectin extraction from pistachio green hull as a new source. Carbohydrate polymers, 173, 107-113.
Chan, S. Y. & Choo, W. S. (2013). Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks. Food Chemistry, 141(4), 3752-3758.
de Oliveira, C. F., Giordani, D., Lutckemier, R., Gurak, P. D., Cladera-Olivera, F. & Marczak, L. D. F. (2016). Extraction of pectin from passion fruit peel assisted by ultrasound. LWT-Food Science and Technology, 71, 110-115.
El-Nawawi, S. A. & Shehata, F. R. (1988). Effect of the extraction temperature on the characteristics of pectin extracted from Egyptian orange peel. Biological Wastes, 24, 307–311.
Faravash, R. S. & Ashtiani, F. Z. (2007). The effect of pH, ethanol volume and acid washing time on the yield of pectin extraction from peach pomace. International Journal of Food Science and Technology, 42, 1177–1187.
Hosseini, S. S., Khodaiyan, F. & Yarmand, M. S. (2016). Aqueous extraction of pectin from sour orange peel and its preliminary physicochemical properties. International journal of biological macromolecules, 82, 920-926.
Kazemi, M., Khodaiyan, F., Labbafi, M., Hosseini, S. S. & Hojjati, M. (2019a). Pistachio green hull pectin: Optimization of microwave-assisted extraction and evaluation of its physicochemical, structural and functional properties. Food chemistry, 271, 663-672.
Kazemi, M., Khodaiyan, F. & Hosseini, S. S. (2019b). Eggplant peel as a high potential source of high methylated pectin: Ultrasonic extraction optimization and characterization. LWT, 105, 182-189.
Kazemi, M., Khodaiyan, F., Hosseini, S. S. & Najari, Z. (2019c). An integrated valorization of industrial waste of eggplant: Simultaneous recovery of pectin, phenolics and sequential production of pullulan. Waste Management, 100, 101-111.
Kazemi, M., Khodaiyan, F. & Hosseini, S. S. (2019d). Utilization of food processing wastes of eggplant as a high potential pectin source and characterization of extracted pectin. Food chemistry, 294, 339-346.
Khodaiyan, F., Razavi, S. H. & Mousavi, S. M. (2008). Optimization of canthaxanthin production by Dietzia natronolimnaea HS-1 from cheese whey using statistical experimental methods. Biochemical Engineering Journal, 40(3), 415–422.
Korish, M. (2015). Faba bean hulls as a potential source of pectin. Journal of food science and technology, 52(9), 6061-6066.
Kostalova, Z., Hromadkova, Z., Ebringerova, A., Polovka, M., Michaelsen, T. E. & Paulsen, B. S. (2013). Polysaccharides from the Styrian oilpumpkin with antioxidant and complement-fixing activity. Industrial Crops and Products, 41, 127– 133.
Kostalova, Z., Aguedo, M. & Hromadkova, Z. (2016). Microwave-assisted extraction of pectin from unutilized pumpkin biomass. Chemical Engineering and Processing: Process Intensification, 102, 9-15.
Liew, S. Q., Ngoh, G. C., Yusoff, R. & Teoh, W. H. (2016). Sequential ultrasound-microwave assisted extraction (UMAE) of pectin from pomelo peels. International journal of biological macromolecules, 93, 426-435.
Liu, L., Fishman, M. L. & Hicks, K. B. (2007). Pectin in controlled drug delivery–a review. Cellulose, 14(1), 15-24.
Liu, L., Cao, J., Huang, J., Cai, Y. & Yao, J. (2010). Extraction of pectins with different degrees of esterification from mulberry branch bark. Bioresource technology, 101(9), 3268-3273.
Liu, L., Jiang, T. & Yao, J. (2011). A two-step chemical process for the extraction of cellulose fiber and pectin from mulberry branch bark efficiently. Journal of Polymers and the Environment, 19(3), 568.
Maleki, M., Shojaeiyan, A. & Monfared, S. R. (2018). Population structure, morphological and genetic diversity within and among melon (Cucumis melo L.) landraces in Iran. Journal of Genetic Engineering and Biotechnology, 16(2), 599-606.
Maran, J. P., Sivakumar, V., Thirugnanasambandham, K. & Sridhar, R. (2013). Optimization of microwave assisted extraction of pectin from orange peel. Carbohydrate polymers, 97(2), 703-709.
Maran, J. P., Sivakumar, V., Thirugnanasambandham, K. & Sridhar, R. (2014). Microwave assisted extraction of pectin from waste Citrullus lanatus fruit rinds. Carbohydrate polymers, 101, 786-791.
Maran, J. P., Swathi, K., Jeevitha, P., Jayalakshmi, J. & Ashvini, G. (2015). Microwave-assisted extraction of pectic polysaccharide from waste mango peel. Carbohydrate polymers, 123, 67-71.
Maric, M., Grassino, A. N., Zhu, Z., Barba, F. J., Brncic, M. & Brncic, S. R. (2018). An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends in Food Science & Technology, 76, 28-37.
Mesbahi, G., Jamalian, J. & Farahnaky, A. (2005). A comparative study on functional properties of beet and citrus pectins in food systems. Food Hydrocolloids, 19(4), 731-738.
Pasandide, B., Khodaiyan, F., Mousavi, Z. E. & Hosseini, S. S. (2017). Optimization of aqueous pectin extraction from Citrus medica peel. Carbohydrate polymers, 178, 27-33.
Pasandide, B., Khodaiyan, F., Mousavi, Z. & Hosseini, S. S. (2018). Pectin extraction from citron peel: optimization by Box–Behnken response surface design. Food science and biotechnology, 27(4), 997-1005.
Pereira, P. H. F., Oliveira, T. Í. S., Rosa, M. F., Cavalcante, F. L., Moates, G. K., Wellner, N., Waldron, K.W. & Azeredo, H. M. (2016). Pectin extraction from pomegranate peels with citric acid. International journal of biological macromolecules, 88, 373-379.
Ptichkina, N. M., Markina, O. A. & Rumyantseva, G. N. (2008). Pectin extraction from pumpkin with the aid of microbial enzymes. Food hydrocolloids, 22(1), 192-195.
Santos, J. D. G., Espeleta, A. F., Branco, A. & de Assis, S. A. (2013). Aqueous extraction of pectin from sisal waste. Carbohydrate Polymers, 92(2), 1997–2001.
Santos, J. D. G., Vieira, I. J. C., Braz-Filho, R. & Branco, A. (2015). Chemicals from Agave sisalana biomass: isolation and identification. International Journal of Molecular Sciences, 16(4), 8761-8771.
Wang, W., Ma, X., Jiang, P., Hu, L., Zhi, Z., Chen, J., Ding, T., Ye, X. & Liu, D. (2016). Characterization of pectin from grapefruit peel: A comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocolloids, 61, 730-739.
Yan, M.-M., Liu, W., Fu, Y.-J., Zu, Y.-G., Chen, C.-Y. & Luo, M. (2010). Optimisation of the microwave-assisted extraction process for four main astragalosides in Radix Astragali. Food Chemistry, 119, 1663–1670.
Yapo, B. M., Robert, C., Etienne, I., Wathelet, B. & Paquot, M. (2007). Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts. Food Chemistry, 100(4), 1356–1364.